Filtrar por:
Tipo de publicación
- Artículo (31)
- Objeto de congreso (24)
- Tesis de maestría (5)
- Documento de trabajo (5)
- Libro (4)
Autores
- Jelle Van Loon (9)
- Tek Sapkota (6)
- Paresh Shirsath (5)
- ML JAT (4)
- Paswel Marenya (4)
Años de Publicación
Editores
- CICESE (3)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Frontiers Media S.A. (1)
- Frontiers Media, S. A. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (65)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional CIBNOR (2)
- Repositorio Institucional Zaloamati (2)
Tipos de Acceso
- oa:openAccess (72)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (66)
- CLIMATE CHANGE (15)
- MAIZE (13)
- AGRIFOOD SYSTEMS (12)
- FOOD SYSTEMS (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Agroecology and systems analysis for sustainable agriculture
Santiago Lopez-Ridaura (2022, [Artículo])
Multi-Criteria Tradeoffs Synergies CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGROECOLOGY INDICATORS SUSTAINABILITY FARMING SYSTEMS
CCAFS Outcome Synthesis Report:
Mathieu Ouédraogo John Recha Maren Radeny Paresh Shirsath Peter Läderach Osana Bonilla-Findji (2021, [Documento de trabajo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE-SMART AGRICULTURE INVESTMENT FARMING SYSTEMS CLIMATE CHANGE
Tania Carolina Camacho Villa Ernesto Adair Zepeda Villarreal Julio Díaz-José Roberto Rendon-Medel Bram Govaerts (2023, [Artículo])
Social Network Analysis Farm Typologies Social Ties Strong Ties CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION NETWORKS PERSISTENCE SOCIAL NETWORK ANALYSIS MAIZE FARMING SYSTEMS
Facundo Tabbita Iván Ortíz-Monasterios Francisco Javier Pinera-Chavez Maria Itria Ibba Carlos Guzman (2023, [Artículo])
BACKGROUND: Continuous development of new wheat varieties is necessary to satisfy the demands of farmers, industry, and consumers. The evaluation of candidate genotypes for commercial release under different on-farm conditions is a strategy that has been strongly recommended to assess the performance and stability of new cultivars in heterogeneous environments and under different farming systems. The main objectives of this study were to evaluate the grain yield and quality performance of ten different genotypes across six contrasting farmers' field conditions with different irrigation and nitrogen fertilization levels, and to develop suggestions to aid breeding programs and farmers to use resources more efficiently. Genotype and genotype by environment (GGE) interaction biplot analyses were used to identify the genotypes with the strongest performance and greatest stability in the Yaqui Valley. RESULTS: Analyses showed that some traits were mainly explained by the genotype effect, others by the field management conditions, and the rest by combined effects. The most representative and diverse field conditions in the Yaqui Valley were also identified, a useful strategy when breeders have limited resources. The independent effects of irrigation and nitrogen levels and their interaction were analyzed for each trait. The results showed that full irrigation was not always necessary to maximize grain yield in the Yaqui Valley. Other suggestions for more efficient use of resources are proposed. CONCLUSIONS: The combination of on-farm trials with GGE interaction analyses is an effective strategy to include in breeding programs to improve processes and resources. Identifying the most outstanding and stable genotypes under real on-farm systems is key to the development of novel cultivars adapted to different management and environmental conditions.
Wheat Quality Bread Wheat Bread-Making CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOFT WHEAT QUALITY FARMING SYSTEMS
Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])
A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES
Gatien Falconnier Marc Corbeels Frédéric Baudron Antoine Couëdel leonard rusinamhodzi bernard vanlauwe Ken Giller (2023, [Artículo])
Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the “yes” answer have put forward the “input reduction” principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is “agroecological” by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility—recycling, efficiency, diversity—remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support.
Manure Crop Yields Smallholder Farming Systems Environmental Hazards CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOLOGICAL NITROGEN FIXATION LEGUMES NUTRIENT BALANCE SOIL FERTILITY AGROECOLOGY YIELD INCREASES LITERATURE REVIEWS
Brendan Brown Pragya Timsina Emma Karki (2023, [Artículo])
While crop diversification has many benefits and is a stated government objective across the Eastern Gangetic Plains (EGP) of South Asia, the complexity of assessment has led to a rather limited understanding on the progress towards, and status of, smallholder crop diversification. Most studies focus on specific commodities or report as part of a singular index, use outdated secondary data, or implement highly localized studies, leading to broad generalisations and a lack of regional comparison. We collected representative primary data with more than 5000 households in 55 communities in Eastern Nepal, West Bengal (India) and Northwest Bangladesh to explore seasonally based diversification experiences and applied novel metrics to understand the nuanced status of farm diversification. While 66 crops were commercially grown across the region, only five crops and three crop families were widely grown (Poaceae, Malvaceae, and Brassicaceae). Non-cereal diversification across the region was limited (1.5 crops per household), though regional differentiation were evident particularly relating to livestock and off-farm activities, highlighting the importance of cross border studies. In terms of farmer's largest commercial plots, 20% of systems contained only rice, and 57% contained only rice/wheat/maize, with substantial regional diversity present. This raises concerns regarding the extent of commercially oriented high value and non-cereal diversification, alongside opportunities for diversification in the under-diversified pre-monsoon and monsoon seasons. Future promotional efforts may need to focus particularly on legumes to ensure the future sustainability and viability of farming systems.
Agricultural Production Systems Farming Systems Change CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRODUCTION CROPPING SYSTEMS DIVERSIFICATION FARMING SYSTEMS SUSTAINABLE INTENSIFICATION
Ahmed Kayad Francelino Rodrigues Marco Sozzi Francesco Pirotti Francesco Marinello Urs Schulthess Bruno Gerard Marie Weiss (2022, [Artículo])
PROSAIL Vegetation Indices Field Variability Digital Farming CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PRECISION AGRICULTURE MAIZE GRAIN YIELD BIOMASS VEGETATION VEGETATION INDEX
Paresh Shirsath Dakshina Murthy Kadiyala (2022, [Artículo])
Rainfall Datasets Satellite Rainfall Estimates CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RAIN RAINFED FARMING DATA SATELLITES