Filtrar por:
Tipo de publicación
- Artículo (187)
- Objeto de congreso (37)
- Tesis de maestría (9)
- Documento de trabajo (7)
- Libro (5)
Autores
- Alison Bentley (8)
- C.M. Parihar (8)
- Jose Crossa (8)
- ML JAT (7)
- Berhanu Tadesse Ertiro (6)
Años de Publicación
Editores
- CICESE (3)
- Multidisciplinary Digital Publishing Institute (3)
- El autor (2)
- Latin American Journal of Aquatic Research (2)
- Myra E. Finkelstein, University of California Santa Cruz, United States of America (2)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (156)
- Repositorio Institucional CICESE (39)
- Repositorio Institucional CIBNOR (25)
- Repositorio Institucional CICY (10)
- Repositorio Institucional Zaloamati (5)
Tipos de Acceso
- oa:openAccess (254)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (169)
- BIOLOGÍA Y QUÍMICA (49)
- CIENCIAS DE LA VIDA (47)
- MAIZE (38)
- BIOLOGÍA ANIMAL (ZOOLOGÍA) (35)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Reactor con biomasa inmovilizada (BIOSTAR): alternativa para remoción biológica de nitrógeno
Petia Mijaylova Nacheva GABRIELA ELEONORA MOELLER CHAVEZ gabriela mantilla morales (2012, [Documento de trabajo])
En la Subcoordinación de Tratamiento de Aguas Residuales del IMTA se desarrolló un reactor biológico denominado BIOSTAR el cual ya está comercializado para el tratamiento descentralizado de aguas residuales de pequeñas poblaciones, fraccionamientos habitacionales, zonas residenciales, casas-habitación, hoteles, centros comerciales, edificios públicos, centros comerciales o recreativos. Se puede obtener agua con calidad adecuada para su desinfección con luz UV y posterior reutilización en servicios al público, cumpliendo con los límites máximos permisibles que para esto se establecen en la NOM-002-SEMARNAT/1997, así como con los límites para descarga a cuerpos receptores según la NOM-001-SEMARNAT/1996. El principal objetivo de tratamiento con el BIOSTAR es la remoción de la materia orgánica en el agua residual.
Tratamiento de aguas residuales Filtros biológicos Biomasa Nitrógeno INGENIERÍA Y TECNOLOGÍA
Sajad Sabzi Razieh Pourdarbani Mohammad Hossein Rohban Alejandro Fuentes_Penna José Luis Hernández-Hernández Mario Hernández Hernández (2021, [Artículo])
Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network¿imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network¿harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the Knearest- neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network¿biogeography-based optimization (ANNBBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.
artificial neural network cucumber hyperspectral imaging majority voting nitrogen INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Whole-genome comparison between reference sequences and oyster Vibrio vulnificus C-genotype strains
CARLOS ABRAHAM GUERRERO RUIZ (2019, [Artículo])
Whole-genome sequences of Vibrio vulnificus clinical genotype (C-genotype) from the CICESE Culture Collection, isolated from oysters, were compared with reference sequences of CMCP6 and YJ016 V. vulnificus C-genotype strains of clinical origin. The RAST web server estimated the whole genome to be ~4.8 Mb in CICESE strain 316 and ~4.7 Mb in CICESE strain 325. No plasmids were detected in the CICESE strains. Based on a phylogenetic tree that was constructed with the whole-genome results, we observed high similarity between the reference sequences and oyster C-genotype isolates and a sharp contrast with environmental genotype (E-genotype) reference sequences, indicating that the differences between the C- and E-genotypes do not necessarily correspond to their isolation origin. The CICESE strains share 3488 genes (63.2%) with the YJ016 strain and 3500 genes (63.9%) with the CMCP6 strain. A total of 237 pathogenicity associated genes were selected from reference clinical strains, where—92 genes were from CMCP6, 126 genes from YJ016, and 19 from MO6-24/ O; the presence or absence of these genes was recorded for the CICESE strains. Of the 92 genes that were selected for CMCP6, 67 were present in both CICESE strains, as were as 86 of the 126 YJ016 genes and 13 of the 19 MO6-24/O genes. The detection of elements that are related to virulence in CICESE strains—such as the RTX gene cluster, vvhA and vvpE, the type IV pili cluster, the XII genomic island, and the viuB genes, suggests that environmental isolates with the C-genotype, have significant potential for infection. © 2019 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, bacterial gene, bacterial strain, bacterial virulence, comparative study, controlled study, gene cluster, gene identification, genomic island, genotype, nonhuman, phylogenetic tree, sequence analysis, strain identification, Vibrio vulnificus BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA
Noel Ndlovu Vijay Chaikam Berhanu Tadesse Ertiro Biswanath Das Yoseph Beyene Charles Spillane Prasanna Boddupalli Manje Gowda (2023, [Artículo])
Grain Yield Low Soil Nitrogen CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN NITROGEN SOIL CHEMICOPHYSICAL PROPERTIES MAIZE QUANTITATIVE TRAIT LOCI
Improving the usage level of nitrogen in maize, through surface irrigation plot techniques
JAIME MACIAS CERVANTES JESUS DEL ROSARIO RUELAS ISLAS PABLO PRECIADO RANGEL WALDO OJEDA BUSTAMANTE MARCO ANTONIO INZUNZA IBARRA JOSE ALFREDO SAMANIEGO GAXIOLA (2015, [Artículo])
El maíz es uno de los principales cultivos sembrados en el estado de Sinaloa; sin embargo, en esta región la aplicación de riegos se realiza sin considerar las características físicas del suelo incrementando las pérdidas de agua y fertilizantes. Es importante desarrollar tecnologías que permitan optimizar el uso de insumos (agua, fertilizantes, pesticidas) incrementando el potencial productivo de los cultivos y reduciendo los costos de producción, por tal motivo, se desarrollaron una serie de experimentos durante los ciclos otoño-invierno 2006-2007 y 2011-2012 en el norte de Sinaloa, México, con el propósito de conocer el efecto del riego por gravedad por diferentes técnicas en la eficiencia de uso del nitrógeno (N) en el cultivo de maíz.
Riego de baja presión Riego de superficie Nitrógeno Cultivos alimenticios Maíz INGENIERÍA Y TECNOLOGÍA
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Shankar Lal Jat Mahesh Gathala Upendra Singh (2023, [Artículo])
This study evaluated the impact of contrasting tillage and nitrogen management options on the growth, yield attributes, and yield of maize (Zea mays L.) in a conservation agriculture (CA)-based maize-wheat (Triticum aestivum L.) system. The field experiment was conducted during the rainy (kharif) seasons of 2020 and 2021 at the research farm of ICAR-Indian Agricultural Research Institute (IARI), New Delhi. The experiment was conducted in a split plot design with three tillage practices [conventional tillage with residue (CT), zero tillage with residue (ZT) and permanent beds with residue (PB)] as main plot treatments and in sub-plots five nitrogen management options [Control (without N fertilization), recommended dose of N @150 kg N/ha, Green Seeker-GS based application of split applied N, N applied as basal through urea super granules-USG + GS based application and 100% basal application of slow release fertilizer (SRF) @150 kg N/ha] with three replications. Results showed that both tillage and nitrogen management options had a significant impact on maize growth, yield attributes, and yield in both seasons. However, time to anthesis and physiological maturity were not significantly affected. Yield attributes were highest in the permanent beds and zero tillage plots, with similar numbers of grains per cob (486.1 and 468.6). The highest leaf area index (LAI) at 60 DAP was observed in PB (5.79), followed by ZT(5.68) and the lowest was recorded in CT (5.25) plots. The highest grain yield (2-year mean basis) was recorded with permanent beds plots (5516 kg/ha), while the lowest
was observed with conventional tillage (4931 kg/ha). Therefore, the study highlights the importance of CA practices for improving maize growth and yield, and suggests that farmers can achieve better results through the adoption of CA-based permanent beds and use of USG as nitrogen management option.
Green Seeker Urea Super Granules CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE UREA YIELDS ZERO TILLAGE NITROGEN
C.M. Parihar Hari Sankar Nayak Renu Pandey ML JAT (2021, [Artículo])
Biological Yield Permanent Beds Yield Attributes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA YIELDS NITROGEN NUTRIENT UPTAKE CROP PERFORMANCE MAIZE
RUTH GINGOLD WERMUTH (2013, [Artículo])
Biodiversity has diminished over the past decades with climate change being among the main responsible factors. One consequence of climate change is the increase in sea surface temperature, which, together with long exposure periods in intertidal areas, may exceed the tolerance level of benthic organisms. Benthic communities may suffer structural changes due to the loss of species or functional groups, putting ecological services at risk. In sandy beaches, free-living marine nematodes usually are the most abundant and diverse group of intertidal meiofauna, playing an important role in the benthic food web. While apparently many functionally similar nematode species co-exist temporally and spatially, experimental results on selected bacterivore species suggest no functional overlap, but rather an idiosyncratic contribution to ecosystem functioning. However, we hypothesize that functional redundancy is more likely to observe when taking into account the entire diversity of natural assemblages. We conducted a microcosm experiment with two natural communities to assess their stress response to elevated temperature. The two communities differed in diversity (high [HD] vs. low [LD]) and environmental origin (harsh vs. moderate conditions). We assessed their stress resistance to the experimental treatment in terms of species and diversity changes, and their function in terms of abundance, biomass, and trophic diversity. According to the Insurance Hypothesis, we hypothesized that the HD community would cope better with the stressful treatment due to species functional overlap, whereas the LD community functioning would benefit from species better adapted to harsh conditions. Our results indicate no evidence of functional redundancy in the studied nematofaunal communities. The species loss was more prominent and size specific in the HD; large predators and omnivores were lost, which may have important consequences for the benthic food web. Yet, we found evidence for alternative diversity-ecosystem functioning relationships, such as the Rivets and the Idiosyncrasy Model. © 2013 Gingold et al.
aquaculture, article, bacterivore, benthos, biodiversity, biomass, climate, community dynamics, controlled study, ecosystem, environmental temperature, microcosm, nematode, nonhuman, population abundance, species diversity, species richness, taxonomy CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA
C.M. Parihar Dipaka Ranjan Sena Prakash Chand Ghasal Shankar Lal Jat Yashpal Singh Saharawat Mahesh Gathala Upendra Singh Hari Sankar Nayak (2024, [Artículo])
Context: Agricultural field experiments are costly and time-consuming, and their site-specific nature limits their ability to capture spatial and temporal variability. This hinders the transfer of crop management information across different locations, impeding effective agricultural decision-making. Further, accurate estimates of the benefits and risks of alternative crop and nutrient management options are crucial for effective decision-making in agriculture. Objective: The objective of this study was to utilize the Crop Environment Resource Synthesis CERES-Wheat model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based wheat system. The study aimed to calibrate the model using data from a field experiment conducted during the 2019-20-2020-21 growing seasons and evaluation it with independent data from the year 2021–22. Method: Crop simulation models, such as the Crop Environment Resource Synthesis CERES-Wheat (DSSAT v 4.8), may provide valuable insights into crop growth and nitrogen dynamics, enabling decision makers to understand and manage production risk more effectively. Therefore, the present study employed the CERES-Wheat (DSSAT v 4.8) model and calibrated it using field data, including plant phenological phases, leaf area index, aboveground biomass, and grain yield from the 2019-20-2020-21 growing seasons. An independent dataset from the year 2021–22 was used for model evaluation. The model was used to investigate the relationship between growing degree days (GDD), temperature, nitrate and ammonical concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on wheat yields. The experimental site is situated at ICAR-Indian Agricultural Research Institute (IARI), New Delhi, representing Indian Trans-Gangetic Plains Zone (28o 40’N latitude, 77o 11’E longitude and an altitude of 228 m above sea level). The treatments consist of four nitrogen management options, viz., N0 (zero nitrogen), N150 (150 kg N ha−1 through urea), GS (Green seeker based urea application) and USG (urea super granules @150 kg N ha−1) in two contrasting tillage systems, i.e., CA-based zero tillage (ZT) and conventional tillage (CT). Result: The outcomes exhibited favorable agreement between the model’s simulations and the observed data for crop phenology (With less than 2 days variation in 50% onset of flowering), grain and biomass yield (Root mean square error; RMSE 336 kg ha−1 and 649 kg ha−1, respectively), and leaf area index (LAI) (RMSE 0.28 & normalized RMSE; nRMSE 6.69%). The model effectively captured the nitrate-N (NO3−-N) dynamics in the soil profile, exhibiting a remarkable concordance with observed data, as evident from its low RMSE = 12.39 kg ha−1 and nRMSE = 13.69%. Moreover, as it successfully simulated the N balance in the production system, the nitrate leaching and ammonia volatilization pattern as described by the model are highly useful to understand these critical phenomena under both conventional tillage (CT) and CA-based Zero Tillage (ZT) treatments. Conclusion: The study concludes that the DSSAT-CERES-Wheat model has significant potential to assess the impacts of tillage and nitrogen management practices on crop growth, yield, and soil nitrogen dynamics in the western Indo-Gangetic Plains (IGP) region. By providing reliable forecasts within the growing season, this modeling approach can facilitate better planning and more efficient resource management. Future implications: The successful implementation of the DSSAT-CERES-Wheat model in this study highlights its applicability in assessing crop performance and soil dynamics. Future research should focus on expanding the model’s capabilities by reducing its sensitivity to initial soil nitrogen levels to refine its predictions further. Moreover, the model’s integration with decision support systems and real-time data can enhance its usefulness in aiding agricultural decision-making and supporting sustainable crop management practices.
Nitrogen Dynamics Mechanistic Crop Growth Models Crop Simulation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA NITROGEN CONSERVATION AGRICULTURE WHEAT MAIZE CROP GROWTH RATE SIMULATION MODELS
Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift
MARY CARMEN RUIZ DE LA TORRE (2013, [Artículo])
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. © 2013 Ruiz-de la Torre et al.
chlorophyll, algal bloom, article, cell count, cell density, coastal waters, controlled study, dinoflagellate, Lingulodinium polyedrum, meteorological phenomena, Mexico, near surface temperature stratification, nonhuman, nutrient concentration, popul CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA