Búsqueda avanzada


Área de conocimiento




Filtrar por:

Tipo de publicación

Autores

Años de Publicación

Editores

Repositorios Orígen

Tipos de Acceso

Idiomas

Materias

Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales

3 resultados, página 1 de 1

Influence of novel coconut oil and beeswax edible coating and MAP on postharvest shelf life and quality attributes of lemon at low temperature

Mohammad Mainuddin Molla Ashfak Ahmed Sabuz Md Abdul Matin (2023, [Artículo])

Weight loss, turning of peel colour from green to yellow and microbial infections are the major postharvest problems of lemon. Lipid-based edible coatings and modified atmospheric packaging (MAP) are effective techniques in maintaining postharvest quality of fruits for long-term storage. With this view, an investigation was conducted for the preservation of green lemon using coconut oil and beeswax edible coating and MAP during storage at low temperature. Physiologically matured lemons were collected and washed with potable water; fruit surface water was removed and then coated with coconut oil-beeswax (90:10) or only coconut oil. After coating, lemons were packaged in MAP or kept in open crates and stored at 12±1 °C and 85±5% relative humidity (RH) for 8 weeks and a week interval, the sampling was conducted. The results revealed that coconut oil-beeswax coating had immense effect on retaining shiny green colour, reducing respiration, weight loss, shrivelling and preserving firmness and ascorbic acid of lemon throughout the storage. On the other hand, MAP mainly helped to retain moisture & firmness and reduce shrivelling. Uncoated lemons kept open lost the highest amount of ascorbic acid and retained only 13.7 mg/100 g that is significantly (p < 0.05) less than the lemons of all other treatments at 8th week of storage period. While lemons coated with coconut oil-beeswax and packaged in MAP was preserved the highest amount (24.2 mg/100 g) of ascorbic acid and there was no significant difference (p < 0.05) with the amount of ascorbic acid content of lemons coated with only coconut oil and packaged in MAP at the last week (8th week) of storage. Hue angle value was 93.4 in uncoated lemons packaged in MAP while it was 113.67 in coconut oil-beeswax coated lemon kept open and 112.64 in lemon coated with coconut oil-beeswax and packaged in MAP at 8th week of storage. Based on all sensory, physical and chemical parameters uncoated lemons kept open was acceptable up to 1 week, coconut oil-beeswax coated lemon kept open was 6 weeks and coconut oil-beeswax coated lemon packaged in MAP was 8 weeks with good quality and shiny green colour.

Edible Coating Sensory Quality Hue Angle Yellowing CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EDIBLE FILMS RESPIRATION RATE LEMONS MODIFIED ATMOSPHERE PACKAGING COLD

Transcriptome mining provides insights into cell wall metabolism and fiber lignification in Agave tequilana Weber

Luis Fernando Maceda Lopez ELSA BEATRIZ GONGORA CASTILLO Enrique Ibarra-Laclette DALIA C. MORAN VELAZQUEZ AMARANTA GIRON RAMIREZ Matthieu Bourdon José Luis Villalpando Aguilar Gabriela Chavez-Calvillo Toomer John Tang Parastoo Azadi Jorge Manuel Santamaría Fernández Itzel López-Rosas Mercedes G Lopez June Simpson FULGENCIO ALATORRE COBOS (2022, [Artículo])

Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioen-ergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for un-derstanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

AGAVE CELL WALLS LIGNOCELLULOSE CAD PROTEIN CESA PROTEIN SCLERENCHYMA BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS

Optimization of the alkali-silane treatment of agave lechuguilla fibers (ixtle) for potential reinforcement in polymeric composites

NOEMI JARDON MAXIMINO MARIAMNE DEHONOR GOMEZ Rolando Villa Moreno MARIA DOLORES BAEZA ALVARADO Luis Edmundo Lugo Uribe (2023, [Artículo])

Reinforced polymeric composites with natural fibers have garnered significant interest in recent years due to the need for biomass utilization and the requirements of various industries, such as automotive and construction. Among these natural fibers, Agave lechuguilla fiber, commonly known as ixtle (FIx) or Tampico fiber, exhibits important characteristics such as length, high strength, and durability. However, there is limited literature on its conditioning, functionalization, and utilization as a reinforcing material in polymeric composites (CP). This study presents the optimization of the alkali-silane treatment of FIx, identifying the most suitable reaction conditions to enhance their thermal stability, tensile strength, and silane coupling agent (ACSi) grafting on the fiber surface. The chemical treatment with ACSi proved highly effective, resulting in a significant grafting content, which was confirmed through FTIR and SEM–EDS analyses. The high level of functionalization did not compromise the mechanical performance of the fibers, suggesting that functionalized FIx holds great potential as a reinforcing material in CP. These findings open new paths for the sustainable use of Agave lechuguilla fibers, contributing to the development of environmentally friendly and high-performance polymeric composites in various industrial applications.

This article belongs to the Special Issue Natural Fibers for Advanced Materials: Addressing Challenges).

Supplementary materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/fib11100086/s1, Figure S1: Optical microscope image of ixtle fibers at a magnification of 50 (a) untreated and (b) alkaline treated (FIx-5); Table S1: FTIR signal assignment for alkaline treated FIx; Table S2: FTIR Signal assignment for silane treated FIx.

Author contributions: Conceptualization, N.J.-M. and L.E.L.U.; methodology, N.J.-M., M.D.G., R.V.M., M.D.B.-A. and L.E.L.U.; validation, N.J.-M. and L.E.L.U.; formal analysis, N.J.-M., M.D.G. and L.E.L.U.; investigation, N.J.-M. and L.E.L.U.; data curation, N.J.-M., M.D.G., R.V.M. and M.D.B.-A.; writing—original draft preparation, N.J.-M. and L.E.L.U.; writing—review and editing, N.J.-M., M.D.G., R.V.M., M.D.B.-A. and L.E.L.U.; visualization, N.J.-M., M.D.G. and L.E.L.U.; supervision, L.E.L.U.; project administration, N.J.-M. and L.E.L.U.; funding acquisition, N.J.-M. and L.E.L.U. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CONAHCYT, “Estancias postdoctorales por México”, grant umber CVU425480.

Data availability statement: Data supporting the findings of this study are available within the article and upon request from the corresponding author.

Acknowledgments: The authors express their gratitude towards Rene Diaz Rebollar and Jazmin Gomez Sara for their technical assistance in conducting the chemical reactions presented in this current study. Additionally, the assistance provided by Luis Alberto Caceres Diaz in the execution of XRD analyses is also acknowledged. Furthermore, N.J.M. extends sincere recognition to CIATEQ A.C. for their provision of essential resources and infrastructure crucial to the advancement of this research. The support rendered by CONAHCYT through the “Estancias postdoctorales por México” program is also gratefully acknowledged, as it has contributed financial backing to the project. Conflicts of Interest: The authors declare no conflict of interest.

Agave lechuguilla Natural fiber Silane coupling agent INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS