Filtrar por:
Tipo de publicación
- Event (4582)
- Artículo (199)
- Documento de trabajo (101)
- Tesis de maestría (49)
- Libro (43)
Autores
- Servicio Sismológico Nacional (IGEF-UNAM) (4582)
- WALDO OJEDA BUSTAMANTE (27)
- DENISE SOARES (12)
- JOSE JAVIER RAMIREZ LUNA (7)
- Sofía Garrido Hoyos (7)
Años de Publicación
Editores
- UNAM, IGEF, SSN, Grupo de Trabajo (4582)
- Instituto Mexicano de Tecnología del Agua (73)
- CICESE (19)
- IMTA. Coordinación de Tratamiento y Calidad del Agua (14)
- Instituto Tecnológico y de Estudios Superiores de Monterrey (9)
Repositorios Orígen
- Repositorio de datos del Servicio Sismológico Nacional (4582)
- Repositorio institucional del IMTA (235)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (63)
- Repositorio Institucional CICESE (41)
- Repositorio Institucional CIBNOR (19)
Tipos de Acceso
- oa:openAccess (5017)
Idiomas
Materias
- Sismología (13746)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (4681)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (4631)
- GEOFÍSICA (4585)
- SISMOLOGÍA Y PROSPECCIÓN SÍSMICA (4584)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Control de sistemas usando aprendizaje de máquina
Systems control using machine learning
Jesús Martín Miguel Martínez (2023, [Tesis de maestría])
El aprendizaje por refuerzo es un paradigma del aprendizaje de máquina con un amplio desarrollo y una creciente demanda en aplicaciones que involucran toma de decisiones y control. Es un paradigma que permite el diseño de controladores que no dependen directamente del modelo que describe la dinámica del sistema. Esto es importante ya que en aplicaciones reales es frecuente que no se disponga de dichos modelos de manera precisa. Esta tesis tiene como objetivo implementar un controlador óptimo en tiempo discreto libre de modelo. La metodología elegida se basa en algoritmos de aprendizaje por refuerzo, enfocados en sistemas con espacios de estado y acción continuos a través de modelos discretos. Se utiliza el concepto de función de valor (Q-función y función V ) y la ecuación de Bellman para resolver el problema del regulador cuadrático lineal para un sistema mecánico masa-resorte-amortiguador, en casos donde se tiene conocimiento parcial y desconocimiento total del modelo. Para ambos casos las funciones de valor son definidas explícitamente por la estructura de un aproximador paramétrico, donde el vector de pesos del aproximador es sintonizado a través de un proceso iterativo de estimación de parámetros. Cuando se tiene conocimiento parcial de la dinámica se usa el método de aprendizaje por diferencias temporales en un entrenamiento episódico, que utiliza el esquema de mínimos cuadrados con mínimos cuadrados recursivos en la sintonización del crítico y descenso del gradiente en la sintonización del actor, el mejor resultado para este esquema es usando el algoritmo de iteración de valor para la solución de la ecuación de Bellman, con un resultado significativo en términos de precisión en comparación a los valores óptimos (función DLQR). Cuando se tiene desconocimiento de la dinámica se usa el algoritmo Q-learning en entrenamiento continuo, con el esquema de mínimos cuadrados con mínimos cuadrados recursivos y el esquema de mínimos cuadrados con descenso del gradiente. Ambos esquemas usan el algoritmo de iteración de política para la solución de la ecuación de Bellman, y se obtienen resultados de aproximadamente 0.001 en la medición del error cuadrático medio. Se realiza una prueba de adaptabilidad considerando variaciones que puedan suceder en los parámetros de la planta, siendo el esquema de mínimos cuadrados con mínimos cuadrados recursivos el que tiene los mejores resultados, reduciendo significativamente ...
Reinforcement learning is a machine learning paradigm with extensive development and growing demand in decision-making and control applications. This technique allows the design of controllers that do not directly depend on the model describing the system dynamics. It is useful in real-world applications, where accurate models are often unavailable. The objective of this work is to implement a modelfree discrete-time optimal controller. Through discrete models, we implemented reinforcement learning algorithms focused on systems with continuous state and action spaces. The concepts of value-function, Q-function, V -function, and the Bellman equation are employed to solve the linear quadratic regulator problem for a mass-spring-damper system in a partially known and utterly unknown model. For both cases, the value functions are explicitly defined by a parametric approximator’s structure, where the weight vector is tuned through an iterative parameter estimation process. When partial knowledge of the dynamics is available, the temporal difference learning method is used under episodic training, utilizing the least squares with a recursive least squares scheme for tuning the critic and gradient descent for the actor´s tuning. The best result for this scheme is achieved using the value iteration algorithm for solving the Bellman equation, yielding significant improvements in approximating the optimal values (DLQR function). When the dynamics are entirely unknown, the Q-learning algorithm is employed in continuous training, employing the least squares with recursive least squares and the gradient descent schemes. Both schemes use the policy iteration algorithm to solve the Bellman equation, and the system’s response using the obtained values was compared to the one using the theoretical optimal values, yielding approximately zero mean squared error between them. An adaptability test is conducted considering variations that may occur in plant parameters, with the least squares with recursive least squares scheme yielding the best results, significantly reducing the number of iterations required for convergence to optimal values.
aprendizaje por refuerzo, control óptimo, control adaptativo, sistemas mecánicos, libre de modelo, dinámica totalmente desconocida, aproximación paramétrica, Q-learning, iteración de política reinforcement learning, optimal control, adaptive control, mechanical systems, modelfree, utterly unknown dynamics, parametric approximation, Q-learning, policy iteration INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL
Towards gender-inclusive innovation: Assessing local conditions for agricultural targeting
Diana E. Lopez Romain Frelat Lone Badstue (2022, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE CLIMATE FEMALES GENDER HUMANS GENDER EQUALITY
Ulises Ortega Carrasco (2023, [Otro, Trabajo de grado, maestría])
La inteligencia artificial (IA) se ha vuelto fundamental en diversas aplicaciones de la vida cotidiana, actualmente se utiliza en asistentes de voz, chatbots, diagnóstico médico, creación de contenido, conducción de vehículos, entre otras áreas. a pesar de sus ventajas la IA presenta retos legales y éticos. El objetivo de este artículo es realizar un análisis de las legislaciones en materia de IA entre la Unión Europea, Estados Unidos de Norteamérica y México. El método de
investigación utilizado fue cualitativo con el objetivo de generar una comprensión detallada de las motivaciones, contextos y particularidades detrás de cada normativa sobre IA del año 2015 al mes de agosto del 2023.
Inteligencia Artificial Regulación de datos personales INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LAS TELECOMUNICACIONES TECNOLOGÍA DE LAS TELECOMUNICACIONES
Grazing behavior of New Zeland holstein cows with access to shade
Rodolfo Ramírez-Valverde Juan Burgueño (2022, [Artículo])
Temperature and Humidity Index Artificial Shade CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SHADING DAIRY COWS SOLAR RADIATION
MARTIN JOSE MONTERO MARTINEZ WALDO OJEDA BUSTAMANTE IVAN RIVAS ACOSTA Julio Sergio Santana (2014, [Documento de trabajo])
Este documento presenta los resultados del esfuerzo conjunto de un grupo de investigadores del IMTA con otro de la Universidad de Sídney para el desarrollo de una herramienta de pronóstico estacional estadístico de escurrimiento y precipitación en la cuenca del Río Huites en el Noroeste de México. La herramienta desarrollada tiene potencial de aplicación para los sectores hídrico y agrícola en donde esta información resulta muy valiosa para llevar a cabo una mejor planeación tanto de la disponibilidad del recurso hídrico como la planeación de un año agrícola para una región determinada. Dentro de los objetivos del proyecto están explorar la posibilidad de encontrar una herramienta útil para predecir el comportamiento de la escorrentía estacional para periodos de 6 meses a 1 año de antelación, que permita mejorar la planificación de un año agrícola en zonas de riego; así como detectar correlaciones significativas entre las temperaturas de la superficie del mar, precipitación y temperaturas de la superficie del mar, y escorrentía para varias estaciones climatológicas e hidrométricas en el Noroeste de México.
Meteorología Predicciones climatológicas Agricultura Modelos estadísticos Informes de proyectos Río Huites INGENIERÍA Y TECNOLOGÍA
Neural network assisted composition for piano in jazz
Ismael Medina Muñoz (2023, [Tesis de maestría])
Artificial Intelligence has taken an important role in activities that were once considered exclusively human. Generative AI is a vibrant area of research, with increasing interest in application fields related to the arts. The recent plethora of innovations in fields like visual arts and natural language processing, which are able to engage in dialogue with users, are just two examples of commercial applications that are driving innovation research for big tech giants. It would not be untrue to say that these innovations are shaping mankind’s development.
Music is an investigative field that presents a challenge. Musical theory itself is challenging for humans, and music is as diverse and rich as the cultures in which it has evolved. This research and proposal is intended as a novel approach to creating a generative artificial intelligence that assists in piano composition for jazz tunes. This genre was selected because of the challenge that its richness and complexity for musical execution and interpretation pose.
By using a Recurrent Neural Net to create new sequences of n-notes from an initial n-note set and using a probabilistic approach to set the duration of each note in the produced n-notes set, the generative artificial intelligence described in this document is the piano composer assistant for jazz tunes.
Inteligencia Artificial INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LAS TELECOMUNICACIONES DISPOSITIVOS DE GRABACIÓN DISPOSITIVOS DE GRABACIÓN
Smart contracts for mobile and wearable sensing data management for health applications
José Ricardo Cedeño García (2023, [Tesis de maestría])
El aumento en la producción de datos derivado de la adopción de tecnologías móviles y de IoT está revolucionando la salud, pero también plantea importantes retos éticos y de privacidad. Los recientes avances en el aprendizaje automático han resaltado la importancia de recopilar y etiquetar datos correctamente, en especial para fines críticos, como el desarrollo de aplicaciones para cuidados médicos. La recopilación de datos médicos para tareas de aprendizaje automático presenta limitaciones en cuanto a la cantidad, variedad y calidad de las fuentes disponibles. Una forma de abordar este dilema es el uso de Blockchain para la recopilación y el uso de datos de pacientes. El anonimato de una red centralizada permite proteger la identidad del paciente. La estructura formada por nodos permite que la información esté siempre disponible y no dependa de un servidor principal. La inmutabilidad de los registros en la cadena garantiza la trazabilidad inequívoca del flujo de los datos del paciente. Por último, los mecanismos de consenso y recompensa de la red podrían motivar a nuevos usuarios a participar del sensado activo. Presentamos TRHEAD, una arquitectura de referencia basada en la Blockchain para recopilar datos sanitarios, firmar consentimientos, anotar datos y obtener crédito por los mismos, permitiendo a los usuarios rastrear el uso de sus datos, a los científicos rastrear su procedencia y proteger al mismo tiempo la privacidad de los pacientes. Exponemos dos implementaciones de nuestra arquitectura aplicadas a distintas campañas de sensado para comprobar su viabilidad, así como los resultados de su aplicación en estos escenarios y las conclusiones que desprendieron de su análisis. Dado que uno de los objetivos principales de TRHEAD es la recopilación de datos mediante sensado activo para el entrenamiento legal/consciente de modelos de aprendizaje automático, se realizó el entrenamiento de un modelo con los datos obtenidos de la campaña de sensado correspondiente a imágenes de rostros humanos, con el fin de detectar estados de ánimo. Finalmente se discute el papel de TRHEAD en el aseguramiento del trato justo y consciente de la información de los pacientes y el camino por recorrer en el perfeccionamiento de la arquitectura.
The increase in data production resulting from the adoption of mobile and IoT technologies is revolutionizing healthcare, but it also poses significant ethical and privacy challenges. Recent advances in machine learning have highlighted the importance of collecting and labeling data correctly, especially for critical purposes such as deploying healthcare software. Collecting medical data for machine learning tasks presents limitations in terms of the quantity, variety, and quality of available sources. One way to address this dilemma is the use of Blockchain for the collection and use of patient data. The anonymity of a centralized network allows the patient’s identity to be protected. The structure formed by nodes allows information to be always available and not dependent on a main server. The immutability of the records in the chain guarantees the unequivocal traceability of the flow of patient data. Finally, the network’s consensus and reward mechanisms could motivate new users to participate in active sensing. We present TRHEAD, a Blockchain-based reference architecture for collecting healthcare data, signing consents, annotating data and getting credit for it, allowing users to track the use of their data, scientists to track its provenance while protecting patients privacy. We present two implementations of our architecture applied to different sensing campaigns to test their feasibility, as well as the results of their application in these scenarios and the conclusions drawn from those results. Since one of the main objectives of TRHEAD is the collection of data through active sensing for the legal/conscious training of machine learning models, a model was trained with the data obtained from the sensing campaign corresponding to images of human faces, in order to detect moods. Finally, the role of TRHEAD in ensuring the fair and conscientious treatment of patient information and the road ahead in refining the architecture is discussed.
Contratos Inteligentes, Blockchain, Privacidad, Aprendizaje de Máquina Etico, Recopilación Consciente de Datos, Consentimiento, Arquitectura de Referencia Smart Contracts, Blockchain, Privacy, Ethical Machine Learning, Conscious Data Collection, Consent, Reference Architecture INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL
Los programas de medicina de precisión y los desafíos para la gestión de la salud pública
Guillermo Foladori Guillermo Foladori (2023, [Artículo, Artículo])
Varios países iniciaron programas para el desarrollo de medicina de precisión. Con miles o millones de datos de salud, priorizando los mapas genéticos, mediante inteligencia artificial se elaboran algoritmos que identifican subpoblaciones con susceptibilidad a determinadas enfermedades para luego establecer la correspondencia farmacogenómica con las medicinas adecuadas. Este artículo realiza una acotada caracterización de esta propuesta y sistematiza aspectos críticos para su implementación desde una perspectiva de salud pública. Dados los argumentos expuestos, resulta probable que la medicina personalizada lleve a una mayor desigualdad entre países y regiones y al interior de los diferentes sectores sociales.
Medicina de precisión Inteligencia artificial Farmacogenómica Tendencias socioeconómicas CIENCIAS SOCIALES; INGENIERÍA Y TECNOLOGÍA; MEDICINA Y CIENCIAS DE LA SALUD CIENCIAS SOCIALES INGENIERÍA Y TECNOLOGÍA MEDICINA Y CIENCIAS DE LA SALUD
La inteligencia artificial y sus modelos de redes neuronales
Alejandro E. Rodríguez-Sánchez (2024, [Artículo, Artículo])
Este artículo revisa qué son los modelos en la inteligencia artificial (IA), con especial énfasis en las redes neuronales artificiales y su capacidad para simular y predecir fenómenos complejos. Ejemplifica la aplicación multidisciplinaria de la IA en campos como la astronomía, destacando la imagen del primer agujero negro, y en biología molecular, con los avances de AlphaFold. Se resalta la necesidad de entender los modelos de IA más allá de su función técnica, subrayando su contribución al progreso científico. Concluye que la IA, a través de sus modelos, desempeña un papel crucial en el estudio de las regularidades de la naturaleza y de la sociedad.
Inteligencia artificial Redes neuronales artificiales Modelos cientificos Tecnología INGENIERÍA Y TECNOLOGÍA INGENIERÍA Y TECNOLOGÍA
OMAR LLANES CARDENAS OSCAR GERARDO GUTIERREZ RUACHO Iván Hernández Romano ENRIQUE TROYO DIEGUEZ (2022, [Artículo])
"The main goal of this study was to explore the historical and recent spatial concurrence between the frequency (F), duration (D) and intensity (I) of hot extremes (HEs) and the frequency and evolution of meteorological drought in the region of Sinaloa. Based on the values of daily maximum temperatura (Tmax) and precipitation obtained from CLImate COMputing for the interval April–October of a historical period (1963–2000) and a recent period (1982–2014), the HE and the standardized precipitation index (SPI) were calculated on one-month (SPI-1) and four-month (SPI-4) timescales. Spearman rank correlation coefficients (Sr) were used to obtain the significant concurrences (SCs) between HEs and SPI-1, and HEs and SPI-4. El Quelite weather station showed the highest historical SCs between HEs and SPI-1 (−0.66≤Sr≤−0.57). Jaina is the only station that showed SCs with all four indicators of HEs and SPI-4 (−0.47≤Sr≤−0.34). In this study, the concurrence between HEs and SPI-1, and HEs and SPI-4 was determined for the first time. These are phenomena that can decrease the crop yield, particularly for rainfed crops such as maize, sesame and sorghum in the region commonly known as “the breadbasket of Mexico."
frequency and evolution of meteorological droughts, the breadbasket of Mexico, Sinaloa CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO CLIMATOLOGÍA CLIMATOLOGÍA REGIONAL CLIMATOLOGÍA REGIONAL