Filtrar por:
Tipo de publicación
- Artículo (13)
Autores
- ML JAT (4)
- Mahesh Gathala (4)
- Bekele Abeyo (2)
- João Vasco Silva (2)
- Manish Kakraliya (2)
Años de Publicación
Editores
Repositorios Orígen
Tipos de Acceso
- oa:openAccess (13)
Idiomas
- eng (13)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (13)
- NITROGEN-USE EFFICIENCY (5)
- WHEAT (4)
- CONSERVATION AGRICULTURE (3)
- NITROGEN (3)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Associations between endogenous spike cytokinins and grain-number traits in spring wheat genotypes
Gemma Molero Carolina Rivera-Amado Matthew Paul Reynolds John Foulkes (2024, [Artículo])
Spike Cytokinins Grain Number Fruiting Efficiency Wheat Breeding CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SPIKES CYTOKININS GRAIN FRUITING HARVEST INDEX WHEAT PLANT BREEDING
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Renu Pandey Mahesh Gathala ML JAT (2023, [Artículo])
The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.
Net Returns Subsurface Drip Irrigation Subsurface Drip Fertigation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EFFICIENCY GRAIN NITROGEN PHOTOSYNTHESIS PHYSIOLOGY WATER SUPPLY CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE FERTIGATION GROUNDWATER NITROGEN-USE EFFICIENCY WATER PRODUCTIVITY
Manish Kakraliya Deepak Bijarniya Parbodh Chander Sharma ML JAT (2022, [Artículo])
Intensive Tillage Conventional Rice–Wheat Systems Energy Efficiency On-Farm Studies Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE-SMART AGRICULTURE RICE WHEAT CROPPING SYSTEMS
Low nitrogen narrows down phenotypic diversity in durum wheat
Tesfaye Geleta Aga Bekele Abeyo (2023, [Artículo])
Clusters Durum Wheat Nitrogen Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HARD WHEAT GENETIC DIVERGENCE NORMALIZED DIFFERENCE VEGETATION INDEX NITROGEN PRINCIPAL COMPONENT ANALYSIS
Agricultural emissions reduction potential by improving technical efficiency in crop production
Arun Khatri-Chhetri Tek Sapkota sofina maharjan Paresh Shirsath (2023, [Artículo])
CONTEXT: Global and national agricultural development policies normally tend to focus more on enhancing farm productivity through technological changes than on better use of existing technologies. The role of improving technical efficiency in greenhouse gas (GHG) emissions reduction from crop production is the least explored area in the agricultural sector. But improving technical efficiency is necessary in the context of the limited availability of existing natural resources (particularly land and water) and the need for GHG emission reduction from the agriculture sector. Technical efficiency gains in the production process are linked with the amount of input used nd the cost of production that determines both economic and environmental gains from the better use of existing technologies. OBJECTIVE: To assess a relationship between technical efficiency and GHG emissions and test the hypothesis that improving technical efficiency reduces GHG emissions from crop production. METHODS: This study used input-output data collected from 10,689 rice farms and 5220 wheat farms across India to estimate technical efficiency, global warming potential, and emission intensity (GHG emissions per unit of crop production) under the existing crop production practices. The GHG emissions from rice and wheat production were estimated using the CCAFS Mitigation Options Tool (CCAFS-MOT) and the technical efficiency of production was estimated through a stochastic production frontier analysis. RESULTS AND CONCLUSIONS: Results suggest that improving technical efficiency in crop production can reduce emission intensity but not necessarily total emissions. Moreover, our analysis does not support smallholders tend to be technically less efficient and the emissions per unit of food produced by smallholders can be relatively high. Alarge proportion of smallholders have high technical efficiency, less total GHG emissions, and low emissions intensity. This study indicates the levels of technical efficiency and GHG emission are largely influenced by farming typology, i.e. choice and use of existing technologies and management practices in crop cultivation. SIGNIFICANCE: This study will help to promote existing improved technologies targeting GHG emissions reduction from the agriculture production systems.
Technical Efficiency Interventions CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MITIGATION PRODUCTIVITY CROP PRODUCTION GREENHOUSE GAS EMISSIONS
Tesfaye Geleta Aga Bekele Abeyo (2024, [Artículo])
Straw Nitrogen Uptake Nitrogen Harvest Index CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA NITROGEN-USE EFFICIENCY STRAW GENOTYPE ENVIRONMENT INTERACTION HARD WHEAT
João Vasco Silva Frits K. Van Evert Pytrik Reidsma (2023, [Artículo])
Context: Wheat crop growth models from all over the world have been calibrated on the Groot and Verberne (1991) data set, collected between 1982 and 1984 in the Netherlands, in at least 28 published studies to date including various recent ones. However, the recent use of this data set for calibration of potential yield is questionable as actual Dutch winter wheat yields increased by 3.1 Mg ha-1 over the period 1984 – 2015. A new comprehensive set of winter wheat experiments, suitable for crop model calibration, was conducted in Wageningen during the growing seasons of 2013–2014 and of 2014–2015. Objective: The present study aimed to quantify the change of winter wheat variety traits between 1984 and 2015 and to examine which of the identified traits explained the increase in wheat yield most. Methods: PCSE-LINTUL3 was calibrated on the Groot and Verberne data (1991) set. Next, it was evaluated on the 2013–2015 data set. The model was further recalibrated on the 2013–2015 data set. Parameter values of both calibrations were compared. Sensitivity analysis was used to assess to what extent climate change, elevated CO2, changes in sowing dates, and changes in cultivar traits could explain yield increases. Results: The estimated reference light use efficiency and the temperature sum from anthesis to maturity were higher in 2013–2015 than in 1982–1984. PCSE-LINTUL3, calibrated on the 1982–1984 data set, underestimated the yield potential of 2013–2015. Sensitivity analyses showed that about half of the simulated winter wheat yield increase between 1984 and 2015 in the Netherlands was explained by elevated CO2 and climate change. The remaining part was explained by the increased temperature sum from anthesis to maturity and, to a smaller extent, by changes in the reference light use efficiency. Changes in sowing dates, biomass partitioning fractions, thermal requirements for anthesis, and biomass reallocation did not explain the yield increase. Conclusion: Recalibration of PCSE-LINTUL3 was necessary to reproduce the high wheat yields currently obtained in the Netherlands. About half of the reported winter wheat yield increase was attributed to climate change and elevated CO2. The remaining part of the increase was attributed to changes in the temperature sum from anthesis to maturity and, to a lesser extent, the reference light use efficiency. Significance: This study systematically addressed to what extent changes in various cultivar traits, climate change, and elevated CO2 can explain the winter wheat yield increase observed in the Netherlands between 1984 and 2015.
Light Use Efficiency Potential Yield CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP MODELLING LIGHT PHENOLOGY MAXIMUM SUSTAINABLE YIELD TRITICUM AESTIVUM WINTER WHEAT
Manish Kakraliya madhu choudhary Mahesh Gathala Parbodh Chander Sharma ML JAT (2024, [Artículo])
The future of South Asia’s major production system (rice–wheat rotation) is at stake due to continuously aggravating pressure on groundwater aquifers and other natural resources which will further intensify with climate change. Traditional practices, conventional tillage (CT) residue burning, and indiscriminate use of groundwater with flood irrigation are the major drivers of the non-sustainability of rice–wheat (RW) system in northwest (NW) India. For designing sustainable practices in intensive cereal systems, we conducted a study on bundled practices (zero tillage, residue mulch, precise irrigation, and mung bean integration) based on multi-indicator (system productivity, profitability, and efficiency of water, nitrogen, and energy) analysis in RW system. The study showed that bundling conservation agriculture (CA) practices with subsurface drip irrigation (SDI) saved ~70 and 45% (3-year mean) of irrigation water in rice and wheat, respectively, compared to farmers’ practice/CT practice (pooled data of Sc1 and Sc2; 1,035 and 318 mm ha−1). On a 3-year system basis, CA with SDI scenarios (mean of Sc5–Sc8) saved 35.4% irrigation water under RW systems compared to their respective CA with flood irrigation (FI) scenarios (mean of Sc3 and Sc4) during the investigation irrespective of residue management. CA with FI system increased the water productivity (WPi) and its use efficiency (WUE) by ~52 and 12.3% (3-year mean), whereas SDI improved by 221.2 and 39.2% compared to farmers practice (Sc1; 0.69 kg grain m−3 and 21.39 kg grain ha−1 cm−1), respectively. Based on the 3-year mean, CA with SDI (mean of Sc5–Sc8) recorded −2.5% rice yield, whereas wheat yield was +25% compared to farmers practice (Sc1; 5.44 and 3.79 Mg ha−1) and rice and wheat yield under CA with flood irrigation were increased by +7 and + 11%, compared to their respective CT practices. Mung bean integration in Sc7 and Sc8 contributed to ~26% in crop productivity and profitability compared to farmers’ practice (Sc1) as SDI facilitated advancing the sowing time by 1 week. On a system basis, CA with SDI improved energy use efficiency (EUE) by ~70% and partial factor productivity of N by 18.4% compared to CT practices. In the RW system of NW India, CA with SDI for precise water and N management proved to be a profitable solution to address the problems of groundwater, residue burning, sustainable intensification, and input (water and energy) use with the potential for replication in large areas in NW India.
Direct Seeded Rice Subsurface Drip Irrigation Economic Profitability Energy and Nitrogen Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE RICE SUBSURFACE IRRIGATION IRRIGATION SYSTEMS WATER PRODUCTIVITY ECONOMIC VIABILITY ENERGY EFFICIENCY NITROGEN-USE EFFICIENCY
Achla Sharma Juan Burgueño Prashant Vikram Nitika Sandhu Satinder Kaur Parveen Chhuneja (2023, [Artículo])
Plant Nitrogen Use Efficiency Pre-Breeding Lines Genome-Wide Association Study Marker Trait Association CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PRE-BREEDING BREEDING LINES NITROGEN LANDRACES GENETIC MARKERS
Mahesh Gathala ML JAT (2023, [Artículo])
A 3-year field experiment was setup to address the threat of underground water depletion and sustainability of agrifood systems. Subsurface drip irrigation (SDI) system combined with nitrogen management under conservation agriculture-based (CA) maize-wheat system (MWS) effects on crop yields, irrigation water productivity (WPi), nitrogen use efficiency (NUE) and profitability. Grain yields of maize, wheat, and MWS in the SDI with 100% recommended N were significantly higher by 15.8%, 5.2% and 11.2%, respectively, than conventional furrow/flood irrigation (CT-FI) system. System irrigation water savings (~ 55%) and the mean WPi were higher in maize, wheat, and MWS under the SDI than CT-FI system. There was saving of 25% of fertilizer N in maize and MWS whereas no saving of N was observed in wheat. Net returns from MWS were significantly higher (USD 265) under SDI with 100% N (with no subsidy) than CT-FI system despite with higher cost of production. The net returns were increased by 47% when considering a subsidy of 80% on laying SDI system. Our results showed a great potential of complementing CA with SDI and N management to maximize productivity, NUE, and WPi, which may be economically beneficial and environmentally sound in MWS in Trans-IGP of South Asia.
Subsurface Drip Irrigation Nitrogen Management Irrigation Water Productivity Water Savings CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA IRRIGATION WATER NITROGEN-USE EFFICIENCY CONSERVATION AGRICULTURE MAIZE WHEAT