Filtrar por:
Tipo de publicación
- Artículo (21)
- Libro (4)
- Objeto de congreso (4)
- Tesis de maestría (1)
- Otro (1)
Autores
- Nele Verhulst (3)
- Ravi Gopal Singh (3)
- Santiago Lopez-Ridaura (3)
- Andrew Mcdonald (2)
- Bram Govaerts (2)
Años de Publicación
Editores
- Centro de Investigaciones Biológicas del Noroeste, S. C. (1)
- El autor (1)
- Professional Assoc. Cactus Development (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (27)
- Repositorio Institucional CIBNOR (2)
- Repositorio Institucional CICY (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Tipos de Acceso
- oa:openAccess (30)
- oa:embargoedAccess (1)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (28)
- CONSERVATION AGRICULTURE (8)
- FERTILIDAD DEL SUELO (6)
- MAIZE (6)
- AGRICULTURA DE CONSERVACIÓN (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER
Gatien Falconnier Marc Corbeels Frédéric Baudron Antoine Couëdel leonard rusinamhodzi bernard vanlauwe Ken Giller (2023, [Artículo])
Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the “yes” answer have put forward the “input reduction” principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is “agroecological” by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility—recycling, efficiency, diversity—remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support.
Manure Crop Yields Smallholder Farming Systems Environmental Hazards CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOLOGICAL NITROGEN FIXATION LEGUMES NUTRIENT BALANCE SOIL FERTILITY AGROECOLOGY YIELD INCREASES LITERATURE REVIEWS
Climate robust soil fertility management by smallholders in Africa, Asia, and Latin America
Tek Sapkota (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL FERTILITY SMALLHOLDERS FERTILIZERS NUTRIENT MANAGEMENT
Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage.
Community Assembly Functional Diversity Intensive Agricultural Practices Plant Microbiome CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE TILLAGE SOIL BACTERIA MAIZE
Soil analysis and integrated nutrient management
Isaiah Nyagumbo (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL ANALYSIS NUTRIENT MANAGEMENT SOIL FERTILITY
Satellite imagery for high-throughput phenotyping in breeding plots
Francisco Pinto Mainassara Zaman-Allah Matthew Paul Reynolds Urs Schulthess (2023, [Artículo])
Optimized Soil Adjusted Vegetation Index CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HIGH-THROUGHPUT PHENOTYPING SATELLITES WHEAT MAIZE BREEDING NORMALIZED DIFFERENCE VEGETATION INDEX
Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system
Alison Laing Akbar Hossain (2023, [Artículo])
The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS
Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])
Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.
EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Simon Fonteyne Nele Verhulst (2022, [Libro])
Esta edición presenta los resultados de la red de plataformas en el Hub Pacífico Norte, misma que resulta de la colaboración entre el CIMMYT; el Patronato para la Investigación y Experimentación Agrícola del Estado de Sonora A.C. (PIEAES); el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP); la Asociación de Agricultores del Río Sinaloa Poniente (AARSP); la Asociación de Agricultores del Río Fuerte Sur (AARFS); la Asociación de Agricultores del Río Culiacán (AARC); la Universidad Autónoma de Sinaloa (UAS); Servicios Agrofinancieros del Norte S.A. de C.V. (SAFINSA); el Club de Labranza de Conservación del Valle del Évora; Granera del Noroeste S.A. de C.V; y el Instituto de Ciencias Agrícolas de la Universidad Autónoma de Baja California (ICA-UABC). Los lectores podrán encontrar en este libro los resultados de las plataformas con más tiempo de operación, en donde ya se han podido generar suficientes datos para sacar conclusiones basadas en evidencias sólidas. Esperamos que el libro pueda servir de inspiración a los productores para que busquen que sus actividades en el campo sean más productivas, rentables y sustentables.
Plataformas de Investigación Maíz Amarillo Pulgón Áreas de extensión Módulos demostrativos Autosuficiencia Alimentaria Uso de Insumos Ganancias para el Productor Nodos de Innovación CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURA DE CONSERVACIÓN COSTOS DE PRODUCCIÓN EUTROFIZACIÓN MONOCULTIVO DEGRADACIÓN DEL SUELO CONTAMINACIÓN PLAGUICIDAS CAMBIO CLIMÁTICO PLATAFORMAS DE INNOVACIÓN EXTENSIÓN AGRÍCOLA AUTOSUFICIENCIA INSUMOS AGRÍCOLAS CONSERVATION AGRICULTURE PRODUCTION COSTS EUTROPHICATION MONOCULTURE SOIL DEGRADATION CONTAMINATION PESTICIDES CLIMATE CHANGE INNOVATION PLATFORMS AGRICULTURAL EXTENSION SELF-SUFFICIENCY FARM INPUTS
madhu choudhary ML JAT Parbodh Chander Sharma (2022, [Artículo])
Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical–chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice–wheat rotation, ScII is partial CA-based rice–wheat–mungbean, ScIII is partial CSA-based rice–wheat–mungbean, ScIV is partial CSA-based maize–wheat–mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.
Agriculture Management Fungal Community Diversity Indices Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE TILLAGE CLIMATE-SMART AGRICULTURE SOIL ORGANIC CARBON