Filtros
Filtrar por:
Tipo de publicación
- Artículo (18)
- Objeto de congreso (10)
- Libro (3)
- Capítulo de libro (2)
- Artículo (1)
Autores
- ML JAT (6)
- Suresh L.M. (5)
- Paresh Shirsath (4)
- Anil Pimpale (3)
- Pramod Aggarwal (3)
Años de Publicación
Editores
- El autor (1)
- Juan A. Añel, Universidade de Vigo, Spain (1)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. (1)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. División de Ciencias Sociales y Humanidades. (1)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. División de Ciencias y Artes para el Diseño. Departamento de Procesos y Técnicas de Realización. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (27)
- Repositorio Institucional Zaloamati (3)
- Repositorio Institucional CIBNOR (1)
- Repositorio Institucional CICESE (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Tipos de Acceso
- oa:openAccess (34)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (27)
- MAIZE (10)
- CONSERVATION AGRICULTURE (5)
- DISEASE MANAGEMENT (5)
- AGRICULTURE (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Nand Lal Kushwaha Paresh Shirsath Dipaka Ranjan Sena (2022, [Artículo])
FResampler1 Seasonal Climate Forecasts Decision Support System for Agrotechnology Transfer CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE DECISION SUPPORT SYSTEMS YIELDS RICE RISK MANAGEMENT
Adaptation to current and future climatic risks in agriculture: Rajasthan, India
Paresh Shirsath Anil Pimpale Pramod Aggarwal (2022, [Libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RISK CLIMATE RESILIENCE AGRICULTURE CLIMATE CHANGE ADAPTATION
Adaptation to current and future climatic risks in agriculture: Madhya Pradesh, India
Paresh Shirsath Anil Pimpale Pramod Aggarwal (2022, [Libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RISK CLIMATE RESILIENCE AGRICULTURE CLIMATE CHANGE ADAPTATION
Adaptation to current and future climatic risks in agriculture: Maharashtra, India
Paresh Shirsath Anil Pimpale Pramod Aggarwal (2022, [Libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RISK CLIMATE RESILIENCE AGRICULTURE CLIMATE CHANGE ADAPTATION
Hambulo Ngoma João Vasco Silva Frédéric Baudron Isaiah Nyagumbo Christian Thierfelder (2024, [Artículo])
Sustainable agricultural practices such as conservation agriculture have been promoted in southern Africa for nearly three decades, but their adoption remains low. It is of policy interest to unpack behavioural drivers of adoption to understand why adoption remains lower than anticipated. This paper assesses the effects of risk aversion and impatience on the extent and intensity of the adoption of conservation agriculture using panel data collected from 646 households in 2021 and 2022 in Zambia. We find that 12% and 18% of the smallholders were impatient and risk averse, respectively. There are two main empirical findings based on panel data Probit and Tobit models. First, on the extensive margin, being impatient is correlated with a decreased likelihood of adopting combined minimum-tillage (MT) and rotation by 2.9 percentage points and being risk averse is associated with a decreased propensity of adopting combined minimum tillage (MT) and mulching by 3.2 percentage points. Being risk averse is correlated with a decreased chance of adopting basins by 2.8 percentage points. Second, on the intensive margin, impatience and risk aversion are significantly correlated with reduced adoption intensity of basins, ripping, minimum tillage (MT), and combined MT and rotation by 0.02–0.22 ha. These findings imply a need to embed risk management (e.g., through crop yield insurance) in the scaling of sustainable agricultural practices to incentivise adoption. This can help to nudge initial adoption and to protect farmers from yield penalties that are common in experimentation stages.
Risk and Time Preferences CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TECHNOLOGY ADOPTION RISK SUSTAINABLE INTENSIFICATION SMALLHOLDERS
Regis Chikowo Christian Thierfelder Marc Corbeels (2024, [Artículo])
Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our understanding of the impact of CA and its respective three principles on top- and subsoil organic carbon stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. This study was conducted at two long-term experimental sites established in Zimbabwe in 2013. The soil types were abruptic Lixisols at Domboshava Training Centre (DTC) and xanthic Ferralsol at the University of Zimbabwe farm (UZF). The following six treatments, which were replicated four times, were investigated: conventional tillage (CT), conventional tillage with rotation (CTR), no tillage (NT), no tillage with mulch (NTM), no tillage with rotation (NTR), and no tillage with mulch and rotation (NTMR). Maize (Zea mays L.) was the main crop, and treatments with rotation included cowpea (Vigna unguiculata L. Walp.). The soil organic carbon (SOC) concentration and soil bulk density were determined for samples taken from depths of 0–5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–75 and 75–100 cm. Cumulative organic inputs to the soil were also estimated for all treatments. SOC stocks at equivalent soil mass were significantly (p<0.05) higher in the NTM, NTR and NTMR treatments compared with the NT and CT treatments in the top 5 cm and top 10 cm layers at UZF, while SOC stocks were only significantly higher in the NTM and NTMR treatments compared with the NT and CT treatments in the top 5 cm at DTC. NT alone had a slightly negative impact on the top SOC stocks. Cumulative SOC stocks were not significantly different between treatments when considering the whole 100 cm soil profile. Our results show the overarching role of crop residue mulching in CA cropping systems with respect to enhancing SOC stocks but also that this effect is limited to the topsoil. The highest cumulative organic carbon inputs to the soil were observed in NTM treatments at the two sites, and this could probably explain the positive effect on SOC stocks. Moreover, our results show that the combination of at least two CA principles including mulch is required to increase SOC stocks in these low-nitrogen-input cropping systems.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL ORGANIC CARBON CONSERVATION AGRICULTURE EXPERIMENTATION CROP MANAGEMENT
Risk, Covid-19 and hospital care in Mexico City: Are we moving toward a new medical practice?
Rubén Muñoz (2023, [Artículo, Artículo])
Covid-19 pandemic has entailed new challenges for health care in the Mexican public health sector, producing changes in clinical practices that are now handling patients infected with covid-19 and also outpatient consultations at tertiary-level care hospitals. Some of these challenges are related to the perception of risk held by physicians regarding the possibility of contracting or transmitting covid-19 during their work,and to the management of risk from the standpoint of biomedical organizational culture linked to the material and symbolic conditions of public health services predating the pandemic. We analyze these issues from a anthropological research based on in-depth interviews to physicians that work with covid-19 patients at “Covid-19 hospitals” or “hybrid hospitals” in Mexico City. Covid-19 has arrived in social relations and perceptions of risk in the arena of health care and involves knowing and transforming some structural and symbolic conditions, resignified with the pandemic, for proper medical care.
Covid-19 percepción de riesgo personal de salud atención médica hospitalaria cultura organizacional biomédica CIENCIAS SOCIALES CIENCIAS SOCIALES risk perception health care workers hospital care biomedical organizational culture
madhu choudhary ML JAT Parbodh Chander Sharma (2022, [Artículo])
Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical–chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice–wheat rotation, ScII is partial CA-based rice–wheat–mungbean, ScIII is partial CSA-based rice–wheat–mungbean, ScIV is partial CSA-based maize–wheat–mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.
Agriculture Management Fungal Community Diversity Indices Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE TILLAGE CLIMATE-SMART AGRICULTURE SOIL ORGANIC CARBON
Ajay Kumar Mishra ML JAT (2022, [Artículo])
Understanding the farmer's perspective has traditionally been critical to influencing the adoption and out-scaling of CA-based climate-resilient practices. The objective of this study was to investigate the biophysical, socio-economic, and technical constraints in the adoption of CA by farmers in the Western- and Eastern-IGP, i.e., Karnal, Haryana, and Samastipur, Bihar, respectively. A pre-tested structured questionnaire was administered to 50 households practicing CA in Western- and Eastern-IGP. Smallholder farmers (<2 ha of landholding) in Karnal are 10% and Samastipur 66%. About 46% and 8% of households test soil periodically in Karnal and Samastipur, respectively. Results of PCA suggest economic profitability and soil health as core components from the farmer's motivational perspective in Karnal and Samastipur, respectively. Promotion and scaling up of CA technologies should be targeted per site-specific requirements, emphasizing biophysical resource availability, socio-economic constraints, and future impacts of such technology.
Smallholder Farmers Agents of Change Technology Diffusion Climate-Smart Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SMALLHOLDERS SOCIAL STRUCTURE IRRIGATION MANAGEMENT TECHNOLOGY CLIMATE-SMART AGRICULTURE CONSERVATION AGRICULTURE
Tackling Maize Lethal Necrosis (MLN) in eastern Africa through effective phytosanitary approaches
Suresh L.M. Yoseph Beyene Dan Makumbi Manje Gowda Prasanna Boddupalli (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE NECROSIS DISEASE MANAGEMENT PLANT HEALTH GENE EDITING GERMPLASM