Filtrar por:
Tipo de publicación
- Artículo (15)
- Objeto de congreso (7)
- Libro (2)
- Tesis de maestría (1)
Autores
- Suresh L.M. (3)
- Balwinder-Singh (2)
- Diego Pequeno (2)
- Frédéric Baudron (2)
- Isaiah Nyagumbo (2)
Años de Publicación
Editores
- El autor (1)
Repositorios Orígen
Tipos de Acceso
- oa:openAccess (25)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (24)
- MAIZE (6)
- WHEAT (6)
- PRODUCTION SYSTEMS (4)
- CEREALS (3)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Remote sensing of quality traits in cereal and arable production systems: A review
Zhenhai Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])
Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.
Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS
Brendan Brown Pragya Timsina Emma Karki (2023, [Artículo])
While crop diversification has many benefits and is a stated government objective across the Eastern Gangetic Plains (EGP) of South Asia, the complexity of assessment has led to a rather limited understanding on the progress towards, and status of, smallholder crop diversification. Most studies focus on specific commodities or report as part of a singular index, use outdated secondary data, or implement highly localized studies, leading to broad generalisations and a lack of regional comparison. We collected representative primary data with more than 5000 households in 55 communities in Eastern Nepal, West Bengal (India) and Northwest Bangladesh to explore seasonally based diversification experiences and applied novel metrics to understand the nuanced status of farm diversification. While 66 crops were commercially grown across the region, only five crops and three crop families were widely grown (Poaceae, Malvaceae, and Brassicaceae). Non-cereal diversification across the region was limited (1.5 crops per household), though regional differentiation were evident particularly relating to livestock and off-farm activities, highlighting the importance of cross border studies. In terms of farmer's largest commercial plots, 20% of systems contained only rice, and 57% contained only rice/wheat/maize, with substantial regional diversity present. This raises concerns regarding the extent of commercially oriented high value and non-cereal diversification, alongside opportunities for diversification in the under-diversified pre-monsoon and monsoon seasons. Future promotional efforts may need to focus particularly on legumes to ensure the future sustainability and viability of farming systems.
Agricultural Production Systems Farming Systems Change CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRODUCTION CROPPING SYSTEMS DIVERSIFICATION FARMING SYSTEMS SUSTAINABLE INTENSIFICATION
Carlo Montes Anton Urfels Eunjin Han Balwinder-Singh (2023, [Artículo])
Rainy Season TIMESAT APSIM Agricultural Production Systems Simulator Climate Adaptation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RICE WHEAT MONSOONS WET SEASON CROP MODELLING CLIMATE CHANGE ADAPTATION
Testing innovations for adoption of newer and more adapted maize varieties
Michael Ndegwa Pieter Rutsaert Jason Donovan Jordan Chamberlin (2023, [Objeto de congreso])
Changing Production Conditions Genetic Innovations Maize Hybrids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TESTING MAIZE VARIETIES YIELDS FARMERS EXPERIMENTATION
Modelo híbrido de sistemas energéticos para la evaluación del uso de energías renovables
Carlos Iván Torres González (2020, [Tesis de maestría])
En este trabajo proponemos un modelo híbrido para evaluar diferentes escenarios de generación de electricidad con energías renovables que maximiza el bienestar social desde la perspectiva económica contemplando un enfoque técnico sobre la estructura de costos de producción de electricidad. Adicionalmente, realizamos 2 simulaciones del modelo propuesto al sistema eléctrico de Baja California Sur para 10 períodos, contemplando 4 escenarios de producción limpia diferentes. De los resultados observados en ambas simulaciones podemos remarcar 2 puntos en términos de políticas públicas. El primer punto es la importancia de tener múltiples generadores que funcionen con combustibles renovables si se desea producir una proporción significativa de electricidad con FER. El segundo punto es el trade-off entre bienestar y emisiones de CO2. Los resultados sugieren que el aumento del consumo de electricidad es un elemento importante para aumentar el bienestar social. A su vez, el aumento de consumo eléctrico implica un aumento de producción, y por tanto un aumento de emisiones de CO2. Los resultados de la segunda simulación sugieren que con el aumento de la capacidad de generación limpia y costos eficientes, se pueden alcanzar niveles de bienestar casi iguales a los tradicionales, pero con la mitad de emisiones de CO2.
Electric power production -- Effect of renewable energy sources on -- Mexico -- Baja California Sur (State) -- 2015 -- Mathematical models. Carbon dioxide mitigation -- Effect of renewable energy sources on -- Mexico -- Baja California Sur (State) -- 2015 -- Mathematical models. CIENCIAS SOCIALES CIENCIAS SOCIALES