Filtrar por:
Tipo de publicación
- Artículo (13)
- Tesis de maestría (3)
- Tesis de doctorado (2)
- Capítulo de libro (1)
- Objeto de congreso (1)
Autores
- José Luis Hernández-Hernández (3)
- Mario Hernández Hernández (3)
- Razieh Pourdarbani (2)
- Sajad Sabzi (2)
- Abbyssinia Mushunje (1)
Años de Publicación
Editores
- CICESE (3)
- Agronomy (1)
- Atsushi Fujimura, University of Guam, Guam (1)
- El autor (1)
- Heather M. Patterson, Department of Agriculture and Water Resources, Australia (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (10)
- Repositorio Institucional CICESE (5)
- Repositorio Institucional de Ciencia Abierta de la Universidad Autónoma de Guerrero (4)
- Repositorio Institucional CIBNOR (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Tipos de Acceso
- oa:openAccess (21)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (11)
- CIENCIAS TECNOLÓGICAS (6)
- INGENIERÍA Y TECNOLOGÍA (6)
- ANTENAS (4)
- MAIZE (3)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Leah Mungai Joseph Messina Leo Zulu Jiaguo Qi Sieglinde Snapp (2022, [Artículo])
Multilayer Perceptrons CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE LAND USE POPULATION SATELLITE IMAGERY TEXTURE LAND COVER NEURAL NETWORKS REMOTE SENSING
Hussein Shimelis Baloua Nébié Chris Ojiewo Abhishek Rathore (2023, [Artículo])
Heterotic Grouping Breeding Population Development Marker-Assisted Cultivar Development CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA POPULATION STRUCTURE GENE FLOW SINGLE NUCLEOTIDE POLYMORPHISMS SORGHUM BICOLOR BREEDING PROGRAMMES
Population genetic structure of the maize weevil, Sitophilus zeamais, in southern Mexico
Michael Jones Martha Willcox (2023, [Artículo])
Maize Weevil Genetic Structure CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL WORKERS FILTRATION GENE FLOW MAIZE SINGLE NUCLEOTIDE POLYMORPHISM SITOPHILUS ZEAMAIS CURCULIONIDAE
Difusión de cursos que la Fundación Carlos Slim ofrece en aprende.org
Cesar Petroli (2021, [Poster de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TRAINING AGRICULTURAL TRAINING SOCIAL NETWORKS TRAINING COURSES SUSTAINABLE AGRICULTURE
E. African spring wheat breeding pipeline and Network (CIMMYT-KALRO)
sridhar bhavani (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PLANT BREEDING RESEARCH NETWORKS
Tania Carolina Camacho Villa Ernesto Adair Zepeda Villarreal Julio Díaz-José Roberto Rendon-Medel Bram Govaerts (2023, [Artículo])
Social Network Analysis Farm Typologies Social Ties Strong Ties CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION NETWORKS PERSISTENCE SOCIAL NETWORK ANALYSIS MAIZE FARMING SYSTEMS
Chapter 9. Genome-informed discovery of genes and framework of functional genes in wheat
awais rasheed Rudi Appels (2024, [Capítulo de libro])
Wheat Genomics KASP Markers Gene Discovery Functional Markers Gene Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENOMICS SINGLE NUCLEOTIDE POLYMORPHISMS FUNCTIONAL GENOMICS
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
Sorghum value chain analysis in semi-arid Zimbabwe
Abbyssinia Mushunje Munyaradzi Junia Mutenje Charles Pfukwa (2019, [Artículo])
Small Scale Farmers Extension Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRO-INDUSTRIAL SECTOR MARKETING MARGINS SORGHUM VALUE CHAINS
A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
Ali Mirzazadeh Afshin Azizi Yousef Abbaspour_Gilandeh José Luis Hernández-Hernández Mario Hernández Hernández Iván Gallardo Bernal (2021, [Artículo])
Estimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
rapeseed classification damaged crops deep neural networks INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS