Búsqueda avanzada


Área de conocimiento




79 resultados, página 5 de 8

Calibrated multi-model ensemble seasonal prediction of Bangladesh summer monsoon rainfall

Nachiketa Acharya Carlo Montes Timothy Joseph Krupnik (2023, [Artículo])

Bangladesh summer monsoon rainfall (BSMR), typically from June through September (JJAS), represents the main source of water for multiple sectors. However, its high spatial and interannual variability makes the seasonal prediction of BSMR crucial for building resilience to natural disasters and for food security in a climate-risk-prone country. This study describes the development and implementation of an objective system for the seasonal forecasting of BSMR, recently adopted by the Bangladesh Meteorological Department (BMD). The approach is based on the use of a calibrated multi-model ensemble (CMME) of seven state-of-the-art general circulation models (GCMs) from the North American Multi-Model Ensemble project. The lead-1 (initial conditions of May for forecasting JJAS total rainfall) hindcasts (spanning 1982–2010) and forecasts (spanning 2011–2018) of seasonal total rainfall for the JJAS season from these seven GCMs were used. A canonical correlation analysis (CCA) regression is used to calibrate the raw GCMs outputs against observations, which are then combined with equal weight to generate final CMME predictions. Results show, compared to individual calibrated GCMs and uncalibrated MME, that the CCA-based calibration generates significant improvements over individual raw GCM in terms of the magnitude of systematic errors, Spearman's correlation coefficients, and generalised discrimination scores over most of Bangladesh areas, especially in the northern part of the country. Since October 2019, the BMD has been issuing real-time seasonal rainfall forecasts using this new forecast system.

Multi-Model Ensemble Seasonal Forecasting CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE SERVICES FORECASTING MONSOONS

Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems

Mahesh Gathala ML JAT (2023, [Artículo])

A 3-year field experiment was setup to address the threat of underground water depletion and sustainability of agrifood systems. Subsurface drip irrigation (SDI) system combined with nitrogen management under conservation agriculture-based (CA) maize-wheat system (MWS) effects on crop yields, irrigation water productivity (WPi), nitrogen use efficiency (NUE) and profitability. Grain yields of maize, wheat, and MWS in the SDI with 100% recommended N were significantly higher by 15.8%, 5.2% and 11.2%, respectively, than conventional furrow/flood irrigation (CT-FI) system. System irrigation water savings (~ 55%) and the mean WPi were higher in maize, wheat, and MWS under the SDI than CT-FI system. There was saving of 25% of fertilizer N in maize and MWS whereas no saving of N was observed in wheat. Net returns from MWS were significantly higher (USD 265) under SDI with 100% N (with no subsidy) than CT-FI system despite with higher cost of production. The net returns were increased by 47% when considering a subsidy of 80% on laying SDI system. Our results showed a great potential of complementing CA with SDI and N management to maximize productivity, NUE, and WPi, which may be economically beneficial and environmentally sound in MWS in Trans-IGP of South Asia.

Subsurface Drip Irrigation Nitrogen Management Irrigation Water Productivity Water Savings CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA IRRIGATION WATER NITROGEN-USE EFFICIENCY CONSERVATION AGRICULTURE MAIZE WHEAT

Soil CO2 efflux fluctuates in three different annual seasons in a semideciduous tropical forest in Yucatan, Mexico

El flujo de CO2 del suelo fluctúa en tres temporadas del año en un bosque tropical semideciduo de Yucatán, México

Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])

Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.

EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Interculturalidad. Diversidad de Diversidades

IRVING SAMADHI AGUILAR ROCHA (2023, [Libro])

Esta obra sobre interculturalidad y diversidades parte de un contexto universal, es decir, se enmarca en los procesos de globalización del presente siglo XXI. Uno de los debates sostenidos al interior del campo filosófico y de las ciencias sociales, se concentra en las formas de construir un diálogo intercultural capaz de superar fundamentalismos políticos, ideológicos, étnicos y religiosos.

Las perspectivas para abordar el tema son diversas y se plantean desde problemáticas diferentes; por ejemplo, la reproducción de diferentes prácticas socioculturales a distintas escalas, la organización de las actividades contemporáneas comunes a todos, las interacciones entre distintos actores y países. En todas ellas, la interculturalidad, entendida como un diálogo, implica relaciones conflictivas. Los conflictos, desde diferentes enfoques, producen cambios sociales y, además, se interiorizan a nivel emocional.

Este libro pone en evidencia, a través de las diferentes investigaciones aquí reunidas, las situaciones de opresión y resistencia histórica, cultural y socioeconómica existentes en las sociedades. El carácter de las propuestas es crítico, debido al acercamiento a diversas posturas teóricas planteadas en contextos problemáticos y por mostrar conflictos de intereses políticos y económicos, individuales y grupales. En este sentido, se parte de marcos teóricos que posibiliten los discursos sobre lo diverso.

CIENCIAS SOCIALES SOCIOLOGÍA Pluralismo cultural, Multiculturalismo ,Sociología

THE RIGHT TO THE CITY AND URBAN-RURAL LINKAGES. COMMUNITY PARTICIPATION IN THE METROPOLITAN AREA OF TUXTLA GUTIERREZ, CHIAPAS.

Briseida Corzo Rivera Gabriel Castañeda Nolasco (2023, [Artículo, Artículo])

Access to water is a common struggle of the communities in the state of Chiapas, with the effects of urban expansion these struggles increase and with them the challenges that these populations already face, having a greater impact on the rural environment. The struggles to satisfy this basic need are a factor that has triggered processes that promote community participation. Based on a qualitative analysis, this paper compares two existing forms of participation in the rural communities of the Metropolitan Area of Tuxtla Gutierrez that allow the population to manage actions to improve their quality of life. The objective is to analyze how these processes promote or restrict the empowerment of the community and allow progress, not only in the population's access to water, but also in the construction of the right to the city. From the urban-rural linkages, the right to the city is discussed beyond the city, addressing other territories. The study identifies factors that show changes in the participation of the populations and strengthen the community, as well as factors in the relationships of the community and of the community with other actors that limit the scope of the processes.

Participation Right to the city Urban-rural linkages Access to water participación, derecho a la ciudad, vínculos urbano-rurales, acceso al agua. CIENCIAS SOCIALES CIENCIAS SOCIALES

Diversifying with grain legumes amplifies carbon in management-sensitive soil organic carbon pools on smallholder farms

Regis Chikowo Sieglinde Snapp (2023, [Artículo])

Crop diversification with grain legumes has been advocated as a means to increase agroecological resilience, diversify livelihoods, boost household nutrition, and enhance soil health and fertility in cereal-based cropping systems in sub-Saharan Africa and around the world. Soil organic carbon (SOC) is a primary indicator of soil health and there is limited data regarding SOC pools and grain legume diversification on smallholder farms where soils are often marginal. In Malawi, a range of legume diversification options are under investigation, including rotations and a doubled-up legume rotation (DLR) system in which two compatible legumes are intercropped and then rotated with a cereal. The impact of the DLR system on SOC has not yet been determined, and there is a lack of evidence regarding SOC status over a gradient of simple to complex grain legume diversified systems. We address this knowledge gap by evaluating these systems in comparison to continuous sole maize (Zea mays L.) at three on-farm trial sites in central Malawi. After six years of trial establishment, we measured SOC in bulk soils and aggregate fractions and in faster cycling SOC pools that respond more rapidly to management practices, including water extractable organic carbon (WEOC), particulate organic matter carbon (POM-C), potentially mineralizable carbon (C), and macroaggregate C. Cropping treatment differences were not seen in bulk SOC or total N, but they were apparent in SOC pools with a shorter turnover time. The DLR system of intercropped pigeonpea (Cajanus cajan (L.) Millsp.) and groundnut (Arachis hypogaea L.) rotated with maize had higher WEOC, POM-C, potentially mineralizable C, macroaggregate and microaggregate C values than continuous maize. Of the single legume rotations, the pigeonpea-maize rotation had more mineralizable C and microaggregate C compared to continuous maize, while the groundnut-maize rotation had similar C values to the maize system. Overall, this study shows the potential for crop rotations diversified with grain legumes to enhance C in management sensitive SOC pools, and it is one of the first reports to show this effect on smallholder farm sites.

Crop Diversification Water Extractable Organic Carbon CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DIVERSIFICATION LEGUMES PARTICULATE ORGANIC MATTER SOIL ORGANIC CARBON

Gender, rainfall endowment, and farmers’ heterogeneity in wheat trait preferences in Ethiopia

Hom Nath Gartaula Moti Jaleta (2024, [Artículo])

Wheat is a vital cereal crop for smallholders in Ethiopia. Despite over fifty years of research on wheat varietal development, consideration of gendered trait preferences in developing target product profiles for wheat breeding is limited. To address this gap, our study used sex-disaggregated survey data and historical rainfall trends from the major wheat-growing regions in Ethiopia. The findings indicated heterogeneity in trait preferences based on gender and rainfall endowment. Men respondents tended to prefer wheat traits with high straw yield and disease-resistance potential, while women showed a greater appreciation for wheat traits related to good taste and cooking quality. Farmers in high rainfall areas seemed to prioritize high straw yield and disease resistance traits, while those in low rainfall areas valued good adaptation traits more highly. Most of the correlation coefficients among the preferred traits were positive, indicating that farmers seek wheat varieties with traits that serve multiple purposes. Understanding men's and women's preferences and incorporating them in breeding and seed systems could contribute to the development of more targeted and effective wheat varieties that meet the diverse needs of men and women farmers in Ethiopia.

Trait Preferences Multivariate Probit Model CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT AGRONOMIC CHARACTERS GENDER RAINFALL PROBIT ANALYSIS