Filtros
Filtrar por:
Tipo de publicación
- Artículo (52)
- Objeto de congreso (7)
- Tesis de maestría (1)
Autores
- Govindan Velu (5)
- C.M. Parihar (4)
- Hari Sankar Nayak (4)
- Bekele Abeyo (3)
- Dipaka Ranjan Sena (3)
Años de Publicación
Editores
- CICESE (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (59)
- Repositorio Institucional CICESE (1)
Tipos de Acceso
- oa:openAccess (60)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (59)
- YIELDS (31)
- GRAIN (17)
- MAIZE (15)
- WHEAT (14)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Vinod Mishra arun joshi Ravi Singh Govindan Velu (2022, [Artículo])
Biofortified Wheat HarvestPlus Grain Yield Grain Iron Concentration Grain Zinc Concentration CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION WHEAT GRAIN YIELDS ZINC IRON
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Renu Pandey Mahesh Gathala ML JAT (2023, [Artículo])
The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.
Net Returns Subsurface Drip Irrigation Subsurface Drip Fertigation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA EFFICIENCY GRAIN NITROGEN PHOTOSYNTHESIS PHYSIOLOGY WATER SUPPLY CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE FERTIGATION GROUNDWATER NITROGEN-USE EFFICIENCY WATER PRODUCTIVITY
Genetic improvement of global wheat, including progress for enhancing insect resistance
Leonardo Abdiel Crespo Herrera (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC IMPROVEMENT WHEAT BREEDING CLIMATE CHANGE DISEASE RESISTANCE YIELDS
Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion
Urs Schulthess Azam Lashkari (2022, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RELIEF UNMANNED AERIAL VEHICLES WINTER WHEAT YIELDS
Lewis Machida Dan Makumbi (2023, [Artículo])
Maize Variety Testing Multienvironment Trial Analysis Relative Maturity REMATTOOL-R Superior Varieties Identification CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE VARIETIES MATURITY IDENTIFICATION YIELDS
Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])
A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES
Siyabusa Mkuhlani Isaiah Nyagumbo (2023, [Artículo])
Introduction: Smallholder farmers in Sub-Saharan Africa (SSA) are increasingly producing soybean for food, feed, cash, and soil fertility improvement. Yet, the difference between the smallholder farmers’ yield and either the attainable in research fields or the potential from crop models is wide. Reasons for the yield gap include low to nonapplication of appropriate fertilizers and inoculants, late planting, low plant populations, recycling seeds, etc. Methods: Here, we reviewed the literature on the yield gap and the technologies for narrowing it and modelled yields through the right sowing dates and suitable high-yielding varieties in APSIM. Results and Discussion: Results highlighted that between 2010 and 2020 in SSA, soybean production increased; however, it was through an expansion in the cropped area rather than a yield increase per hectare. Also, the actual smallholder farmers’ yield was 3.8, 2.2, and 2.3 times lower than the attainable yield in Malawi, Zambia, and Mozambique, respectively. Through inoculants, soybean yield increased by 23.8%. Coupling this with either 40 kg ha−1 of P or 60 kg ha−1 of K boosted the yields by 89.1% and 26.0%, respectively. Overall, application of 21–30 kg ha-1 of P to soybean in SSA could increase yields by about 48.2%. Furthermore, sowing at the right time increased soybean yield by 300%. Although these technologies enhance soybean yields, they are not fully embraced by smallholder farmers. Hence, refining and bundling them in a digital advisory tool will enhance the availability of the correct information to smallholder farmers at the right time and improve soybean yields per unit area.
Decision Support Tools Digital Tools Site-Specific Recommendations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DECISION SUPPORT SYSTEMS LEGUMES YIELDS SOYBEANS
Mesut KESER fatih ozdemir Pietro Bartolini (2022, [Artículo])
Germplasm Exchange International Nurseries Multi-Locations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WINTER WHEAT BREEDING GERMPLASM YIELDS DATA
Dana Fuerst SHAILESH YADAV Rajib Roychowdhury Carolina Sansaloni Sariel Hübner (2022, [Artículo])
Emmer Wheat CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENETIC VARIATION CLIMATE PHENOLOGY YIELDS MEDITERRANEAN CLIMATE