Filtrar por:
Tipo de publicación
- Artículo (65)
- Tesis de maestría (30)
- Artículo (9)
- Documento de trabajo (9)
- Capítulo de libro (7)
Autores
- Tek Sapkota (4)
- DAVID ORTEGA GAUCIN (3)
- JOSE LUIS MONTESILLO CEDILLO (3)
- Alison Bentley (2)
- Avinash Kumar (2)
Años de Publicación
Editores
- El autor (10)
- Instituto Tecnológico y de Estudios Superiores de Monterrey (10)
- Universidad Autónoma de Ciudad Juárez (8)
- Centro de Investigaciones y Estudios Superiores en Antropología Social (7)
- Instituto Mexicano de Tecnología del Agua (6)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (38)
- Repositorio Institucional del Tecnológico de Monterrey (10)
- Repositorio institucional del IMTA (10)
- Repositorio Institucional CICESE (9)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (9)
Tipos de Acceso
- oa:openAccess (128)
- oa:embargoedAccess (1)
Idiomas
Materias
- CIENCIAS SOCIALES (66)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (43)
- CIENCIAS ECONÓMICAS (23)
- BIOLOGÍA Y QUÍMICA (11)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Jingyi Wang Chaonan Li Long Li Matthew Paul Reynolds Jizeng Jia Xinguo Mao Ruilian Jing (2023, [Artículo])
Association Analysis Elite Genetic Resources Map‐Based Clones Protein Phosphatase 2C CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DROUGHT GENETIC RESOURCES PROTEINS WHEAT WILTING
Review of Nationally Determined Contributions (NCD) of China from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
China is the largest emitter of greenhouse gases (GHG) and one of the countries most affected by climate change. China's food systems are a major contributor to climate change: in 2018, China's food systems emitted 1.09 billion tons of carbondioxide equivalent (CO2eq) GHGs, accounting for 8.2% of total national GHG emissions and 2% of global emissions. According to the Third National Communication (TNC) Report, in 2010, GHG emissions from energy, industrial processes, agriculture, and waste accounted for 78.6%, 12.3%, 7.9%, and 1.2% of total emissions, respectively, (excluding emissions from land use, land-use change and forestry (LULUCF). Total GHG emissions from the waste sector in 2010 were 132 Mt CO2 eq, with municipal solid waste landfills accounting for 56 Mt. The average temperature in China has risen by 1.1°C over the last century (1908–2007), while nationally averaged precipitation amounts have increased significantly over the last 50 years. The sea level and sea surface temperature have risen by 90 mm and 0.9°C respectively in the last 30 years. A regional climate model predicted an annual mean temperature increase of 1.3–2.1°C by 2020 (2.3–3.3°C by 2050), while another model predicted a 1–1.6°C temperature increase and a 3.3–3.7 percent increase in precipitation between 2011 and 2020, depending on the emissions scenario. By 2030, sea level rise along coastal areas could be 0.01–0.16 meters, increasing the likelihood of flooding and intensified storm surges and causing the degradation of wetlands, mangroves, and coral reefs. Addressing climate change is a common human cause, and China places a high value on combating climate change. Climate change has been incorporated into national economic and social development plans, with equal emphasis on mitigation and adaptation to climate change, including an updated Nationally Determined Contribution (NDC) in 2021. The following overarching targets are included in China's updated NDC: • Peaking carbon dioxide emissions “before 2030” and achieving carbon neutrality before 2060. • Lowering carbon intensity by “over 65%” by 2030 from the 2005 level. • Increasing forest stock volume by around 6 billion cubic meters in 2030 from the 2005 level. The targets have come from several commitments made at various events, while China has explained very well the process adopted to produce its third national communication report. An examination of China's NDC reveals that it has failed to establish quantifiable and measurable targets in the agricultural sectors. According to the analysis of the breakdown of food systems and their inclusion in the NDC, the majority of food system activities are poorly mentioned. China's interventions or ambitions in this sector have received very little attention. The adaptation component is mentioned in the NDC, but is not found to be sector-specific or comprehensive. A few studies have rated the Chinese NDC as insufficient, one of the reasons being its failure to list the breakdown of each sector's clear pathway to achieving its goals. China's NDC lacks quantified data on food system sub-sectors. Climate Action Trackers' "Insufficient" rating indicates that China's domestic target for 2030 requires significant improvements to be consistent with the Paris Agreement's target of 1.5°C temperature limit. Some efforts are being made: for example, scientists from the Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA-CAAS) have developed methods for calculating GHG emissions from livestock and poultry farmers that have been published as an industrial standard by the Ministry of Agriculture and Rural Affairs, PRC (Prof Hongmin Dong, personal communication) but this still needs to be consolidated and linked to China’s NDC. The updated Nationally Determined Contributions fall short of quantifiable targets in agriculture and food systems as a whole, necessitating clear pathways. China's NDC is found to be heavily focused on a few sectors, including energy, transportation, and urban-rural development. The agricultural sectors' and food systems' targets are vague, and China's agrifood system has a large carbon footprint. As a result, China should focus on managing the food system (production, processing, transportation, and food waste management) to reduce carbon emissions. Furthermore, China should take additional measures to make its climate actions more comprehensive, quantifiable, and measurable, such as setting ambitious and clear targets for the agriculture sector, including activity-specific GHG-reduction pathways; prioritizing food waste and loss reduction and management; promoting sustainable livestock production and low carbon diets; reducing chemical pollution; minimizing the use of fossil fuel in the agri-system and focusing on developing green jobs, technological advancement and promoting climate-smart agriculture; promoting indigenous practices and locally led adaptation; restoring degraded agricultural soils and enhancing cooperation and private partnership. China should also prepare detailed NDC implementation plans including actions and the GHG reduction from conditional targets.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GREENHOUSE GAS EMISSIONS CLIMATE CHANGE FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Maraeva Gianella Daniele Dondi Andreas Börner Anca Macovei Andrea Pagano Filippo Guzzon Alma Balestrazzi (2022, [Artículo])
Thermogravimetry CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CARBOHYDRATES PROLINE TOCOPHEROLS GENETICS PHYSIOLOGY PEAS SEEDS SUGARS DIFFERENTIAL SCANNING CALORIMETRY SEED LONGEVITY THERMOGRAVIMETRIC ANALYSIS
Shailendra Sharma Avinash Kumar Apekshita Singh deepmala sehgal Shailendra Goel SoomNath Raina (2022, [Artículo])
Immune Evasion Mutation Analysis Novel Spike Mutations Reduced Neutralization SARS-CoV-2 CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COVID-19 NEUTRALIZATION SPIKES
CAIXIA LAN Ravi Singh JULIO HUERTA_ESPINO Zaifeng Li Evans Lagudah sridhar bhavani (2022, [Artículo])
Genetic Analysis Molecular Mapping Wheat Rusts APR Genes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ADULT PLANT RESISTANCE LANDRACES WHEAT RUSTS
Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Soil analysis and integrated nutrient management
Isaiah Nyagumbo (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL ANALYSIS NUTRIENT MANAGEMENT SOIL FERTILITY
Jeroen Groot XiaoLin Yang (2022, [Artículo])
Holistic Analysis Model-Based Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP ROTATION FOOD SECURITY WATER USE ENVIRONMENTAL PROTECTION ECONOMIC VIABILITY
JOSE LUIS MONTESILLO CEDILLO (2000, [Artículo])
Este artículo fija los requerimientos de un sistema de información para modelar ofertas y demandas de agua. Para ello plantea posibles modelos de oferta y demanda de agua para segmentos de usuarios distintos. A su vez, supone que los modelos se cuantificarán mediante un sistema acorde con el marco de las normas internacionales en materia de cuentas nacionales. Los modelos se diseñan para valorar el agua como bien económico. Se presentan especificaciones simples de tales modelos y se señalan opciones de cuantificación. Se exponen las necesidades de información que imponen los modelos en el marco de un sistema de cuentas económicas y ecológicas como el que se está construyendo en México.
Economía del agua Sistemas de información Modelos económicos CIENCIAS SOCIALES
Evaluación de costos de adaptación al cambio climático en organismos operadores de agua
Héctor Camacho ANA ELIZABETH GARCIA SALINAS HECTOR MANUEL BRAVO PEREZ (2016, [Libro])
Tabla de contenido: 1.- Introducción – 2. Cambio climático – 3. Costos de adaptación al cambio climático – 4. Metodología de evaluación de costos de adaptación al cambio climático – 5. Implementación de la metodología. Caso Mexicali, Baja California – 6. Implementación de la metodología. Caso Monterrey, Nuevo León – 7. Comentarios finales.
Este trabajo presenta una propuesta metodológica para el cálculo de los costos de adaptación al cambio climático en un organismo operador de agua potable, alcantarillado y saneamiento (OOAPAS). La metodología que se propone se divide en dos partes: 1) el análisis de vulnerabilidad, que permite evaluar la sensibilidad de los organismos operadores ante los impactos potenciales del cambio climático y su capacidad de adaptación basada en el incremento de la eficiencia física y comercial; y 2) el cálculo de costos, que utiliza la información obtenida en el análisis de vulnerabilidad para determinar las posibles opciones para adaptarse a los impactos que se consideran significativos y el costo que implica aumentar la capacidad de respuesta de un organismo operador. La implementación de la metodología propuesta para el cálculo de los costos de adaptación al cambio climático en un OOAPAS se presenta en este trabajo para los sistemas de agua de las ciudades de Mexicali, Baja California, y Monterrey, Nuevo León. Considerando que en ellas se esperan incrementos de temperatura significativos en los próximos veinte años, lo que podría aumentar la vulnerabilidad de estos organismos operadores.
1.- Introducción – 2. Cambio climático – 3. Costos de adaptación al cambio climático – 4. Metodología de evaluación de costos de adaptación al cambio climático – 5. Implementación de la metodología. Caso Mexicali, Baja California – 6. Implementación de la metodología. Caso Monterrey, Nuevo León – 7. Comentarios finales.
Organismos operadores Cambio climático Análisis de vulnerabilidad Aspectos económicos CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA