Filtros
Filtrar por:
Tipo de publicación
- Artículo (51)
- Objeto de congreso (12)
- Libro (7)
- Tesis de maestría (6)
- Documento de trabajo (5)
Autores
- Paresh Shirsath (6)
- Tek Sapkota (6)
- ML JAT (5)
- Timothy Joseph Krupnik (4)
- Anil Pimpale (3)
Años de Publicación
Editores
- El autor (3)
- CICESE (2)
- Universidad Autónoma Metropolitana (México). (2)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Universidad Autónoma de Ciudad Juárez. Instituto de Arquitectura, Diseño y Arte (2)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (62)
- Repositorio Institucional CICESE (9)
- Repositorio Institucional Zaloamati (5)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (3)
- Repositorio Digital CIDE (2)
Tipos de Acceso
- oa:openAccess (86)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (64)
- CLIMATE CHANGE (39)
- AGRICULTURE (12)
- OCEANOGRAFÍA (11)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Lovemore Chipindu Walter Mupangwa Isaiah Nyagumbo Mainassara Zaman-Allah (2023, [Artículo])
Autoregressive Integrated Moving Average Facebook Prophet Hidden Markov Model Regression Regression with Hidden Logistic Process CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COASTAL AREAS SEMIARID ZONES SUBHUMID ZONES RAINFALL CLIMATE CHANGE
Mining alleles for tar spot complex resistance from CIMMYT's maize Germplasm Bank
Martha Willcox Juan Burgueño Daniel Jeffers Zakaria Kehel Rosemary Shrestha Kelly Swarts Edward Buckler Sarah Hearne Charles Chen (2022, [Artículo])
Maize Landraces Maize Genetic Resources Allelic Diversity Rare Alleles Phenotypic Characterization Tropical Maize Phyllachora maydis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE LANDRACES GENETIC RESOURCES ALLELES FOLIAR DISEASES CLIMATE CHANGE
Mustafa Kamal Timothy Joseph Krupnik (2024, [Artículo])
High-resolution mapping of rice fields is crucial for understanding and managing rice cultivation in countries like Bangladesh, particularly in the face of climate change. Rice is a vital crop, cultivated in small scale farms that contributes significantly to the economy and food security in Bangladesh. Accurate mapping can facilitate improved rice production, the development of sustainable agricultural management policies, and formulation of strategies for adapting to climatic risks. To address the need for timely and accurate rice mapping, we developed a framework specifically designed for the diverse environmental conditions in Bangladesh. We utilized Sentinel-1 and Sentinel-2 time-series data to identify transplantation and peak seasons and employed the multi-Otsu automatic thresholding approach to map rice during the peak season (April–May). We also compared the performance of a random forest (RF) classifier with the multi-Otsu approach using two different data combinations: D1, which utilizes data from the transplantation and peak seasons (D1 RF) and D2, which utilizes data from the transplantation to the harvest seasons (D2 RF). Our results demonstrated that the multi-Otsu approach achieved an overall classification accuracy (OCA) ranging from 61.18% to 94.43% across all crop zones. The D2 RF showed the highest mean OCA (92.15%) among the fourteen crop zones, followed by D1 RF (89.47%) and multi-Otsu (85.27%). Although the multi-Otsu approach had relatively lower OCA, it proved effective in accurately mapping rice areas prior to harvest, eliminating the need for training samples that can be challenging to obtain during the growing season. In-season rice area maps generated through this framework are crucial for timely decision-making regarding adaptive management in response to climatic stresses and forecasting area-wide productivity. The scalability of our framework across space and time makes it particularly suitable for addressing field data scarcity challenges in countries like Bangladesh and offers the potential for future operationalization.
Synthetic Aperture Radar Random Forest Boro Rice In-Season Maps CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SAR (RADAR) RICE FLOODING CLIMATE CHANGE
Economics of crop residue management
Vijesh Krishna Maxwell Mkondiwa (2023, [Artículo])
More than five billion metric tons of agricultural residues are produced annually worldwide. Despite having multiple uses and significant potential to augment crop and livestock production, a large share of crop residues is burned, especially in Asian countries. This unsustainable practice causes tremendous air pollution and health hazards while restricting soil nutrient recycling. In this review, we examine the economic rationale for unsustainable residue management. The sustainability of residue utilization is determined by several economic factors, such as local demand for and quantity of residue production, development and dissemination of technologies to absorb excess residue, and market and policy instruments to internalize the social costs of residue burning. The intervention strategy to ensure sustainable residue management depends on public awareness of the private and societal costs of open residue burning.
Crop Biomass Residue Burning Environmental Effects CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS BIOMASS RESIDUES ENVIRONMENTAL IMPACT CLIMATE CHANGE SMALLHOLDERS TECHNOLOGY ADOPTION
Prakash Kuchanur Ayyanagouda Patil Pervez Zaidi vinayan mt (2023, [Artículo])
Multi-Parental Synthetics Rapid Cycle Genomic Selection Phenotypic Correlation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE HEAT STRESS MARKER-ASSISTED SELECTION DOUBLED HAPLOIDS PHENOTYPIC VARIATION CLIMATE CHANGE
Pervez Zaidi vinayan mt Sudha Nair Prakash Kuchanur Ayyanagouda Patil Atul Kulkarni Prasanna Boddupalli (2023, [Artículo])
Lowland Tropics CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE DROUGHT HEAT STRESS LOWLAND MAIZE VAPOUR PRESSURE DEFICIT
Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])
A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES
Adane Tufa Hambulo Ngoma Paswel Marenya Christian Thierfelder (2023, [Artículo])
In southern Africa, conservation agriculture (CA) has been promoted to address low agricultural productivity, food insecurity, and land degradation. However, despite significant experimental evidence on the agronomic and economic benefits of CA and large scale investments by the donor community and national governments, adoption rates among smallholders remain below expectation. The main objective of this research project was thus to investigate why previous efforts and investments to scale CA technologies and practices in southern Africa have not led to widespread adoption. The paper applies a multivariate probit model and other methods to survey data from 4,373 households and 278 focus groups to identify the drivers and barriers of CA adoption in Malawi, Zambia, and Zimbabwe. The results show that declining soil fertility is a major constraint to maize production in Zambia and Malawi, and drought/heat is more pronounced in Zimbabwe. We also find gaps between (a) awareness and adoption, (b) training and adoption, and (c) demonstration and adoption rates of CA practices in all three countries. The gaps are much bigger between awareness and adoption and much smaller between hosting demonstration and adoption, suggesting that much of the awareness of CA practices has not translated to greater adoption. Training and demonstrations are better conduits to enhance adoption than mere awareness creation. Therefore, demonstrating the applications and benefits of CA practices is critical for promoting CA practices in all countries. Besides, greater adoption of CA practices requires enhancing farmers’ access to inputs, addressing drudgery associated with CA implementation, enhancing farmers’ technical know-how, and enacting and enforcing community bylaws regarding livestock grazing and wildfires. The paper concludes by discussing the implications for policy and investments in CA promotion.
Adoption Focus Group Discussion CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE CLIMATE CHANGE
Peter Läderach Paresh Shirsath Steven Prager (2023, [Capítulo de libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CONFLICTS VULNERABILITY EARLY WARNING SYSTEMS