Filtrar por:
Tipo de publicación
- Artículo (25)
- Tesis de maestría (6)
- Tesis de doctorado (4)
- Documento de trabajo (4)
Autores
- CLAUDIO HUMBERTO MEJIA RUIZ (2)
- César Calderón Mólgora (2)
- María Laura Quezada Jiménez (2)
- Pedro Jesús Herrera Franco (2)
- ADRIAN CERVANTES URIBE (1)
Años de Publicación
Editores
- CICESE (5)
- Amitava Mukherjee, VIT University, India (2)
- Elsevier (2)
- MDPI (2)
- Multidisciplinary Digital Publishing Institute (2)
Repositorios Orígen
- Repositorio Institucional CICESE (13)
- Repositorio institucional del IMTA (6)
- Repositorio Institucional CIBNOR (5)
- Repositorio IPICYT (3)
- Repositorio Institucional CICY (3)
Tipos de Acceso
- oa:openAccess (39)
Idiomas
Materias
- BIOLOGÍA Y QUÍMICA (18)
- CIENCIAS DE LA VIDA (13)
- INGENIERÍA Y TECNOLOGÍA (13)
- MICROBIOLOGÍA (10)
- OTRAS (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Sonia Quijano (2020, [Artículo])
Pseudo-nitzschia is a cosmopolitan genus, some species of which can produce domoic acid (DA), a neurotoxin responsible for the Amnesic Shellfish Poisoning (ASP). In this study, we identified P. subpacifica for the first time in Todos Santos Bay and Manzanillo Bay, in the Mexican Pacific using SEM and molecular methods. Isolates from Todos Santos Bay were cultivated under conditions of phosphate sufficiency and deficiency at 16°C and 22°C to evaluate the production of DA. This toxin was detected in the particulate (DAp) and dissolved (DAd) fractions of the cultures during the exponential and stationary phases of growth of the cultures. The highest DA concentration was detected during the exponential phase grown in cells maintained in P-deficient medium at 16°C (1.14 ± 0.08 ng mL-1 DAd and 4.71 ± 1.11 × 10−5 ng cell-1 of DAp). In P-sufficient cultures DA was higher in cells maintained at 16°C (0.25 ± 0.05 ng mL-1 DAd and 9.41 ± 1.23 × 10−7 ng cell-1 of DAp) than in cells cultured at 22°C. Therefore, we confirm that P. subpacifica can produce DA, especially under P-limited conditions that could be associated with extraordinary oceanographic events such as the 2013–2016 "Blob" in the northeastern Pacific Ocean. This event altered local oceanographic conditions and possibly generated the presence of potential harmful species in areas with economic importance on the Mexican Pacific coast. © 2020 Quijano-Scheggia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
domoic acid, domoic acid, kainic acid, Article, cell growth, controlled study, diatom, Mexico, morphology, nonhuman, Pacific Ocean, phylogeny, plant cell, plant growth, Pseudo nitzschia, toxin analysis, cell culture technique, classification, diatom, CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA
Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift
MARY CARMEN RUIZ DE LA TORRE (2013, [Artículo])
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. © 2013 Ruiz-de la Torre et al.
chlorophyll, algal bloom, article, cell count, cell density, coastal waters, controlled study, dinoflagellate, Lingulodinium polyedrum, meteorological phenomena, Mexico, near surface temperature stratification, nonhuman, nutrient concentration, popul CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA
Juan Pablo Carmona Almazán (2023, [Tesis de maestría])
En el tratamiento de enfermedades, la administración de dosis múltiples es una estrategia común para mantener la concentración de los fármacos dentro de un margen terapéutico. Sin embargo, la adherencia de los pacientes a este tipo de tratamiento puede ser un desafío, llevando a una administración irregular de dosis. Una alternativa utilizada para abordar este reto son las nanopartículas híbridas polímero/lípido(NPPLs), las cuales, con menos administraciones, tienen el potencial de alcanzar la dosis necesaria en el tratamiento, posibilitando entonces el incremento del apego al tratamiento. En nuestro proyecto, se llevó a cabo la síntesis de nanopartículas de ácido poli láctico-co-glicólico (PLGA) recubiertas de lecitina de soya, por medio de técnicas de nanoprecipitación y autoensamblaje. Además, integramos estas nanopartículas en una matriz polimérica a base de aerogeles de gelatina de manera que estuvieran distribuidas de manera homogénea y concentrada. Nuestro enfoque central radica en entender la cinética de liberación de un compuesto hidrofílico (ácido gálico) y uno lipofílico (quercetina) a partir de este sistema. Logramos sintetizar nanopartículas con un diámetro hidrodinámico de 100 ± 15 nm, 153 ± 33 y149±21 nm, en el caso de las nanopartículas vacías y cargadas con ácido gálico y cargadas con quercetina, respectivamente. La eficiencia de encapsulación del ácido gálico fue del 90 ± 5 % y de la quercetina fue del 70 ± 10 %. Los resultados que obtuvimos muestran que el ácido gálico sigue una cinética del modelo de Korsmeyer-Peppas, con un valor de n = 1.01 y la quercetina una cinética de primer orden. Dado que los compuestos encapsulados tuvieron una liberación más lenta con respecto a los compuestos libres en los aerogeles de gelatina, nuestro trabajo indica que el encapsulamiento en NPPLs de un compuesto bioactivo, independientemente de su naturaleza química, puede ayudar a retrasar su liberación y reducir el número de dosis administradas, en consecuencia, esto pudiera contribuir a incrementar el apego de un paciente al tratamiento.
In the treatment of diseases, the administration of multiple doses is a common strategy to maintain drug concentrations within a therapeutic range. However, patient adherence to this type of treatment can be challenging, resulting in irregular dosing. An alternative approach used to address this challenge involves polymer/lipid hybrid nanoparticles (NPPLs), which have the potential to achieve the necessary drug dose with fewer administrations, thereby increasing treatment adherence. In our project, we synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with soy lecithin using nanoprecipitation and self-assembly techniques. These nanoparticles were then integrated into a polymer matrix based on gelatin aerogels to ensure homogeneous and concentrated distribution. Our main focus was to understand the release kinetics of a hydrophilic compound (gallic acid) and a lipophilic one (quercetin) from this system. We successfully synthesized nanoparticles with a hydrodynamic diameter of 100 ± 15 nm, 153 ± 33 nm, and 149 ± 21 nm for empty nanoparticles, gallic acid-loaded, and quercetin-loaded nanoparticles, respectively. The encapsulation efficiency was 90 ± 5 % for gallic acid and 70 ± 10 % for quercetin. The results we obtained indicate that gallic acid follows Korsmeyer-Peppas kinetics with a value of n = 1.01, while quercetin exhibits first-order kinetics. Since the encapsulated compounds showed slower release compared to free compounds in gelatin aerogels, our work suggests that encapsulation in NPPLs with a bioactive compound, regardless of its chemical nature, can help delay its release and reduce the number of doses administered. Consequently, this could contribute to improve patient treatment adherence.
nanopartículas híbridas, cinética de liberación, sistemas poliméricos, PLGA/lecitina, compuestos hidrofílicos y lipofílicos hybrid nanoparticles, release kinetics, polymeric systems, PLGA/lecithin, hydrophilic and lipophilic compounds INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS INGENIERÍA Y TECNOLOGÍA QUÍMICAS ANÁLISIS DE POLÍMEROS ANÁLISIS DE POLÍMEROS
Dual function of EDTA with silver nanoparticles for root canal treatment–A novel modification
JUAN MANUEL MARTINEZ ANDRADE (2018, [Artículo])
The chelating and antimicrobial capacity of a novel modification of 17% EDTA with silver nanoparticles (AgNPs) (EDTA-AgNPs) was evaluated in-vitro for root canal treatment (RCT). The EDTA-AgNPs solution was characterized by UV-Vis spectroscopy, ?-potential and high-resolution transmission electron microscopy (HRTEM). Antimicrobial capacity was evaluated against Candida albicans and Staphylococcus aureus in planktonic and biofilm cells by broth macrodilution (24 h) and XTT assays, (1, 10 and 30 min) respectively. The chelating capacity of EDTA-AgNPs was assessed indirectly (smear layer removal) and directly (demineralizing effect) in bovine dentin at two silver concentrations, 16 and 512 ?g/ ml at 1 and 10 minutes of exposure time. Smear layer removal was evaluated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The demineralizing effect was determined by atomic absorption spectroscopy (AAS), microhardness test (MH) and X-ray diffractometer (XRD). Synthesized AgNPs were quasi-spherical in shape with an average size of 13.09 ± 8.05 nm. 17% EDTA-AgNPs was effective to inhibit C. albicans and S. aureus in planktonic and biofilm cultures. The smear layer removal and demineralizing effect were similar between 17% EDTA-AgNPs and 17% EDTA treatments. The 17% EDTA-AgNPs solution proved to be an effective antimicrobial agent, and has a similar chelating capacity to 17% EDTA alone. These in-vitro studies strongly suggest that EDTA-AgNPs could be used for effective smear layer removal, having an antimicrobial effect at the same time during RCT. © 2018 Martinez-Andrade et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
edetic acid, silver nanoparticle, edetic acid, metal nanoparticle, silver, antibacterial activity, antibiotic sensitivity, antifungal activity, antimicrobial activity, Article, atomic absorption spectrometry, atomic force microscopy, biofilm, bovine, BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA
Carlos Rosendo Romo Quiñonez Píndaro Álvarez Ruiz CLAUDIO HUMBERTO MEJIA RUIZ NINA BOGDANCHIKOVA Alexey Pestryakov CARINA GAMEZ JIMENEZ WENCESLAO VALENZUELA QUIÑONEZ Magnolia Montoya Mejía EUSEBIO NAVA PEREZ (2022, [Artículo])
"In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4 R ) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated."
Silver nanoparticles, Shrimp, Aquaculture, Chronic toxicity, WSSV, AgNP, Argovit, Litopenaeus vannamei , Silver fed, White spot syndrome virus BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA INMUNOLOGÍA INMUNIZACIÓN INMUNIZACIÓN
CYNTHIA LIZZETH ARAUJO PALOMARES (2011, [Artículo])
Rho-type GTPases are key regulators that control eukaryotic cell polarity, but their role in fungal morphogenesis is only beginning to emerge. In this study, we investigate the role of the CDC-42 - RAC - CDC-24 module in Neurospora crassa. rac and cdc-42 deletion mutants are viable, but generate highly compact colonies with severe morphological defects. Double mutants carrying conditional and loss of function alleles of rac and cdc-42 are lethal, indicating that both GTPases share at least one common essential function. The defects of the GTPase mutants are phenocopied by deletion and conditional alleles of the guanine exchange factor (GEF) cdc-24, and in vitro GDP-GTP exchange assays identify CDC-24 as specific GEF for both CDC-42 and RAC. In vivo confocal microscopy shows that this module is organized as membrane-associated cap that covers the hyphal apex. However, the specific localization patterns of the three proteins are distinct, indicating different functions of RAC and CDC-42 within the hyphal tip. CDC-42 localized as confined apical membrane-associated crescent, while RAC labeled a membrane-associated ring excluding the region labeled by CDC42. The GEF CDC-24 occupied a strategic position, localizing as broad apical membrane-associated crescent and in the apical cytosol excluding the Spitzenkörper. RAC and CDC-42 also display distinct localization patterns during branch initiation and germ tube formation, with CDC-42 accumulating at the plasma membrane before RAC. Together with the distinct cellular defects of rac and cdc-42 mutants, these localizations suggest that CDC-42 is more important for polarity establishment, while the primary function of RAC may be maintaining polarity. In summary, this study identifies CDC-24 as essential regulator for RAC and CDC-42 that have common and distinct functions during polarity establishment and maintenance of cell polarity in N. crassa. © 2011 Araujo-Palomares et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
CDC24 protein, guanine nucleotide exchange factor, protein Cdc42, Rac protein, unclassified drug, cell cycle protein, fungal protein, membrane protein, multiprotein complex, protein Cdc42, Rac protein, allele, apical membrane, article, assay, cell me BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA
Alexander Lichius (2012, [Artículo])
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture. © 2012 Lichius et al.
fungal protein, protein BNI 1, protein BUD 6, protein SPA 2, protein Spk, unclassified drug, actin binding protein, cytoskeleton protein, fungal protein, article, cell fusion, cellular distribution, comparative study, conidium, controlled study, cyto BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA
Roberto Vazquez-Munoz (2019, [Artículo])
The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10–12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6–7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance. © 2019 Vazquez-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ampicillin, antibiotic agent, aztreonam, beta lactam antibiotic, biapenem, chloramphenicol, kanamycin, silver nanoparticle, silver nitrate, antiinfective agent, metal nanoparticle, silver, antibiotic sensitivity, antimicrobial activity, Article, bact BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOFÍSICA BIOFÍSICA
RAMON OSVALDO ECHAURI ESPINOSA (2012, [Artículo])
Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenkörper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenkörper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis. © 2012 Echauri-Espinosa et al.
actin related protein 2-3 complex, F actin, fimbrin protein, fluorescent dye, fungal protein, fungal protein coronin, green fluorescent protein, unclassified drug, actin binding protein, coronin proteins, fungal protein, article, cell polarity, contr BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA