Filtrar por:
Tipo de publicación
- Artículo (60)
- Objeto de congreso (15)
- Libro (7)
- Documento de trabajo (6)
- Tesis de maestría (5)
Autores
- Paresh Shirsath (7)
- Jelle Van Loon (4)
- ML JAT (4)
- Tek Sapkota (4)
- Anil Pimpale (3)
Años de Publicación
Editores
- CICESE (3)
- Universidad de Guanajuato (2)
- & (1)
- Atmospheric Research, New Zealand (1)
- Atsushi Fujimura, University of Guam, Guam (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (73)
- Repositorio Institucional CICESE (9)
- Repositorio Institucional CIBNOR (3)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (3)
- Repositorio Institucional Zaloamati (2)
Tipos de Acceso
- oa:openAccess (96)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (76)
- CLIMATE CHANGE (39)
- AGRICULTURE (12)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (10)
- OCEANOGRAFÍA (9)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
Dana Fuerst SHAILESH YADAV Rajib Roychowdhury Carolina Sansaloni Sariel Hübner (2022, [Artículo])
Emmer Wheat CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENETIC VARIATION CLIMATE PHENOLOGY YIELDS MEDITERRANEAN CLIMATE
Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments
Rodomiro Ortiz Paulino Pérez-Rodríguez Osval Antonio Montesinos-Lopez Jose Crossa (2023, [Artículo])
Potato Traits Cross-Validation Breeding Data CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LEAST SQUARES METHOD POTATOES ENVIRONMENT PLANT BREEDING
Estimation of general and specific combining ability effects for quality protein maize inbred lines
Adefris Teklewold Dagne Wegary Gissa (2022, [Artículo])
General Combining Ability Specific Combining Ability CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COMBINING ABILITY MAIZE PROTEIN QUALITY INBRED LINES DATA ANALYSIS
Gideon Kruseman (2022, [Artículo])
Reusability Java Script Object Notation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DATA MANAGEMENT INTEROPERABILITY METADATA SOCIOECONOMIC ASPECTS
sridhar bhavani (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT VARIETY TRIALS PRODUCTION DATA
Tirthankar Bandyopadhyay Stéphanie M. Swarbreck Vandana Jaiswal Rajeev Gupta Alison Bentley Manoj Prasad (2022, [Artículo])
C4 Model Crop Climate Resilience CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE RESILIENCE FOOD SECURITY GENE EXPRESSION NITROGEN
Martin van Ittersum (2023, [Artículo])
Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.
Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY
The generation challenge programme platform: Semantic standards and workbench for crop science
Richard Bruskiewich Guy Davenport Mathieu Rouard Reinhard Simon Samart Wanchana Trushar Shah Victor Jun Ulat Andrew Farmer Pankaj Jaiswal Mark Wilkinson David Marshall Alyssa Collins (2008, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP IMPROVEMENT GENETIC RESOURCES PLANT BREEDING BIODIVERSITY COMPUTER APPLICATIONS DIGITAL TECHNOLOGY DATA PROCESSING
Gene editing to accelerate crop breeding
Kanwarpal Dhugga (2022, [Artículo])
Accelerated Breeding Grain Biofortification Maize Lethal Necrosis Rust Resistance Site-Directed Nuclease Scenarios CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING BACKCROSSING DISEASE RESISTANCE GENE EDITING GRAIN BIOFORTIFICATION RUSTS