Búsqueda avanzada


Área de conocimiento




54 resultados, página 3 de 6

Bundling subsurface drip irrigation with no-till provides a window to integrate mung bean with intensive cereal systems for improving resource use efficiency

Manish Kakraliya madhu choudhary Mahesh Gathala Parbodh Chander Sharma ML JAT (2024, [Artículo])

The future of South Asia’s major production system (rice–wheat rotation) is at stake due to continuously aggravating pressure on groundwater aquifers and other natural resources which will further intensify with climate change. Traditional practices, conventional tillage (CT) residue burning, and indiscriminate use of groundwater with flood irrigation are the major drivers of the non-sustainability of rice–wheat (RW) system in northwest (NW) India. For designing sustainable practices in intensive cereal systems, we conducted a study on bundled practices (zero tillage, residue mulch, precise irrigation, and mung bean integration) based on multi-indicator (system productivity, profitability, and efficiency of water, nitrogen, and energy) analysis in RW system. The study showed that bundling conservation agriculture (CA) practices with subsurface drip irrigation (SDI) saved ~70 and 45% (3-year mean) of irrigation water in rice and wheat, respectively, compared to farmers’ practice/CT practice (pooled data of Sc1 and Sc2; 1,035 and 318 mm ha−1). On a 3-year system basis, CA with SDI scenarios (mean of Sc5–Sc8) saved 35.4% irrigation water under RW systems compared to their respective CA with flood irrigation (FI) scenarios (mean of Sc3 and Sc4) during the investigation irrespective of residue management. CA with FI system increased the water productivity (WPi) and its use efficiency (WUE) by ~52 and 12.3% (3-year mean), whereas SDI improved by 221.2 and 39.2% compared to farmers practice (Sc1; 0.69 kg grain m−3 and 21.39 kg grain ha−1 cm−1), respectively. Based on the 3-year mean, CA with SDI (mean of Sc5–Sc8) recorded −2.5% rice yield, whereas wheat yield was +25% compared to farmers practice (Sc1; 5.44 and 3.79 Mg ha−1) and rice and wheat yield under CA with flood irrigation were increased by +7 and + 11%, compared to their respective CT practices. Mung bean integration in Sc7 and Sc8 contributed to ~26% in crop productivity and profitability compared to farmers’ practice (Sc1) as SDI facilitated advancing the sowing time by 1 week. On a system basis, CA with SDI improved energy use efficiency (EUE) by ~70% and partial factor productivity of N by 18.4% compared to CT practices. In the RW system of NW India, CA with SDI for precise water and N management proved to be a profitable solution to address the problems of groundwater, residue burning, sustainable intensification, and input (water and energy) use with the potential for replication in large areas in NW India.

Direct Seeded Rice Subsurface Drip Irrigation Economic Profitability Energy and Nitrogen Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE RICE SUBSURFACE IRRIGATION IRRIGATION SYSTEMS WATER PRODUCTIVITY ECONOMIC VIABILITY ENERGY EFFICIENCY NITROGEN-USE EFFICIENCY

Bacterial communities in the rhizosphere at different growth stages of maize cultivated in soil under conventional and conservation agricultural practices

Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])

Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage.

Community Assembly Functional Diversity Intensive Agricultural Practices Plant Microbiome CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE TILLAGE SOIL BACTERIA MAIZE

Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system

Alison Laing Akbar Hossain (2023, [Artículo])

The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS

Physiological ecology of Mexican CAM plants: history, progress, and opportunities

Joel David Flores Rivas Oscar Briones Villareal JOSE LUIS ANDRADE (2022, [Artículo])

"In Mexico, plants with crassulacean acid metabolism (CAM) are part of the Mexican culture, have different uses and are even emblematic. Unfortunately, only a small fraction of the Mexican CAM plants has been studied physiologically. For this review, the following questions were considered: What ecophysiological studies have been conducted with CAM species native to Mexico? What ecophysiological processes in Mexican CAM plants are the most studied? What type of ecophysiological studies with CAM plants are still needed? A database of scientific studies on CAM plant species from Mexico was documented, including field and laboratory works for species widely distributed, and those studies made outside Mexico with Mexican species. Physiological processes were grouped as germination, photosynthesis, and water relations. Most studies were done for CAM species of Cactaceae, Bromeliaceae, Asparagaceae and Orchidaceae, andmost ecophysiological studies have been done on germination of cacti. Field and laboratory studies on photosynthesis and water relations were mostly for terrestrial cacti and epiphytic bromeliads. There were few physiological studies with CAM seedlings in Mexico and few studies using stable isotopes of water and carbon of CAM plants in the field. More field and laboratory studies of physiological responses and plasticity of CAM plants to multiple stress factors are required to model plant responses to global climate change. In general, more physiological studies are essential for all CAM species and for species of the genus Clusia, with C3-CAM and CAM members, which can become ecologically important under some climate change scenarios."

Asparagaceae Bromeliaceae Cactaceae Germination Photosynthesis Water relations Orchidaceae BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) BIOLOGÍA VEGETAL (BOTÁNICA)

Gobernanza de múltiple escala para la gestión local del agua de consumo humano en América Latina: estudios de caso en Costa Rica, Honduras y México

Multilevel governance for local management of drinking water in Latin America: case studies from Costa Rica, Honduras and Mexico

FERNANDO GUMETA GOMEZ ELVIRA DURAN MEDINA David Brayden (2017, [Artículo])

El abastecimiento del agua para consumo humano a escala local puede depender de la participación social. Se compararon tres regímenes de gobernanza para gestión del agua basado en acción colectiva y en entidades anidadas: 1) Asociaciones Administradoras de Sistemas de Acueductos y Alcantarillados Sanitario (ASADAS) en Costa Rica, 2) Juntas Ad-ministradoras del Agua (JAA) en Honduras y 3) Comités de Agua (CA) en Oaxaca, México. Se analizaron el marco legal, la estructura y operatividad y la eficiencia en la provisión y conservación de los recursos hídricos mediante revisión documental, observación partici-pativa y entrevistas informales.ASADAS y JAA son reconocidas legalmente, mientras que los CA no tienen soporte en el marco legal mexicano. Los regímenes mostraron estructuras y operatividad análoga, así como tendencias similares hacia eficiencia en la provisión del agua y en asegurar la recarga hídrica, pero capacidades económicas diferentes. Reconocer y empoderar los CA en México podría aumentar y garantizar el abastecimiento de agua a el largo plazo

Adequate supply of drinking water at local level depends, in many cases on community participation. We compare three governance regimes for drinking water management based on multilevel collective action: 1) ASADAS in Costa Rica, 2) Water Boards (JAA, for its acronym in spanish) in Honduras and 3) Water User Committees (CA, for its acronym in spanish) in Mexico. Our data is based on participant observation, and formal and informal interviews. Legal framework, structure and operation, and efficiency for provision and conservation of water resources are analyzed. ASADAS and Water Boards are legal entities with recog-nized community participation and collective action, while Water Committees have no legal support by the Mexican Government. Regimens showed similar structures and operation, but different economic capabilities and efficiencies in the provision of water and in ensur-ing water recharge. Recognition and empowerment of the Water Committees in Mexico could increase and ensure water provision in the long- term

HUMANIDADES Y CIENCIAS DE LA CONDUCTA Abasto de agua Gobernanza local Comités de agua Oaxaca Sustentabilidad de agua Water supply Local governance Water committees Oaxaca Sustainability of water

Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems

Mahesh Gathala ML JAT (2023, [Artículo])

A 3-year field experiment was setup to address the threat of underground water depletion and sustainability of agrifood systems. Subsurface drip irrigation (SDI) system combined with nitrogen management under conservation agriculture-based (CA) maize-wheat system (MWS) effects on crop yields, irrigation water productivity (WPi), nitrogen use efficiency (NUE) and profitability. Grain yields of maize, wheat, and MWS in the SDI with 100% recommended N were significantly higher by 15.8%, 5.2% and 11.2%, respectively, than conventional furrow/flood irrigation (CT-FI) system. System irrigation water savings (~ 55%) and the mean WPi were higher in maize, wheat, and MWS under the SDI than CT-FI system. There was saving of 25% of fertilizer N in maize and MWS whereas no saving of N was observed in wheat. Net returns from MWS were significantly higher (USD 265) under SDI with 100% N (with no subsidy) than CT-FI system despite with higher cost of production. The net returns were increased by 47% when considering a subsidy of 80% on laying SDI system. Our results showed a great potential of complementing CA with SDI and N management to maximize productivity, NUE, and WPi, which may be economically beneficial and environmentally sound in MWS in Trans-IGP of South Asia.

Subsurface Drip Irrigation Nitrogen Management Irrigation Water Productivity Water Savings CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA IRRIGATION WATER NITROGEN-USE EFFICIENCY CONSERVATION AGRICULTURE MAIZE WHEAT