Filter by:
Publication type
- Article (28)
- Conference object (27)
- Book (8)
- Book part (5)
- Master thesis (5)
Authors
- Jelle Van Loon (9)
- Tek Sapkota (6)
- Paswel Marenya (5)
- Christian Thierfelder (4)
- Jason Donovan (4)
Issue Years
Publishers
- CICESE (3)
- Universidad Autónoma Metropolitana (México). (2)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Frontiers Media S.A. (1)
Origin repository
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (70)
- Repositorio Institucional Zaloamati (4)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional CIBNOR (1)
Access Level
- oa:openAccess (78)
Language
Subject
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (71)
- CLIMATE CHANGE (16)
- MAIZE (13)
- AGRIFOOD SYSTEMS (12)
- FOOD SYSTEMS (10)
Select the topics of your interest and receive the hottest publications in your email
Manish Kakraliya madhu choudhary Mahesh Gathala Parbodh Chander Sharma ML JAT (2024)
The future of South Asia’s major production system (rice–wheat rotation) is at stake due to continuously aggravating pressure on groundwater aquifers and other natural resources which will further intensify with climate change. Traditional practices, conventional tillage (CT) residue burning, and indiscriminate use of groundwater with flood irrigation are the major drivers of the non-sustainability of rice–wheat (RW) system in northwest (NW) India. For designing sustainable practices in intensive cereal systems, we conducted a study on bundled practices (zero tillage, residue mulch, precise irrigation, and mung bean integration) based on multi-indicator (system productivity, profitability, and efficiency of water, nitrogen, and energy) analysis in RW system. The study showed that bundling conservation agriculture (CA) practices with subsurface drip irrigation (SDI) saved ~70 and 45% (3-year mean) of irrigation water in rice and wheat, respectively, compared to farmers’ practice/CT practice (pooled data of Sc1 and Sc2; 1,035 and 318 mm ha−1). On a 3-year system basis, CA with SDI scenarios (mean of Sc5–Sc8) saved 35.4% irrigation water under RW systems compared to their respective CA with flood irrigation (FI) scenarios (mean of Sc3 and Sc4) during the investigation irrespective of residue management. CA with FI system increased the water productivity (WPi) and its use efficiency (WUE) by ~52 and 12.3% (3-year mean), whereas SDI improved by 221.2 and 39.2% compared to farmers practice (Sc1; 0.69 kg grain m−3 and 21.39 kg grain ha−1 cm−1), respectively. Based on the 3-year mean, CA with SDI (mean of Sc5–Sc8) recorded −2.5% rice yield, whereas wheat yield was +25% compared to farmers practice (Sc1; 5.44 and 3.79 Mg ha−1) and rice and wheat yield under CA with flood irrigation were increased by +7 and + 11%, compared to their respective CT practices. Mung bean integration in Sc7 and Sc8 contributed to ~26% in crop productivity and profitability compared to farmers’ practice (Sc1) as SDI facilitated advancing the sowing time by 1 week. On a system basis, CA with SDI improved energy use efficiency (EUE) by ~70% and partial factor productivity of N by 18.4% compared to CT practices. In the RW system of NW India, CA with SDI for precise water and N management proved to be a profitable solution to address the problems of groundwater, residue burning, sustainable intensification, and input (water and energy) use with the potential for replication in large areas in NW India.
Article
Direct Seeded Rice Subsurface Drip Irrigation Economic Profitability Energy and Nitrogen Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE RICE SUBSURFACE IRRIGATION IRRIGATION SYSTEMS WATER PRODUCTIVITY ECONOMIC VIABILITY ENERGY EFFICIENCY NITROGEN-USE EFFICIENCY
Tek Sapkota Sieglinde Snapp (2022)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CEREAL PRODUCTS PRODUCTION SYSTEMS CEREALS NITROGEN RICE WHEAT MAIZE
Evan Girvetz Christian Thierfelder Iddo Dror (2022)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE FOOD SYSTEMS DIVERSIFICATION RESILIENCE
MLN disease diagnostics, MLN disease-free seed production and MLN disease management
Suresh L.M. (2022)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DISEASES DISEASE MANAGEMENT SEED PRODUCTION MAIZE NECROSIS YIELD LOSSES ECONOMIC IMPACT SURVEILLANCE SYSTEMS TRAINING
Redesigning crop varieties to win the race between climate change and food security
Kevin Pixley Jill Cairns Santiago Lopez-Ridaura Chris Ojiewo Baloua Nébié Godfrey Asea Biswanath Das Benoit Joseph Batieno Clare Mukankusi Sarah Hearne Kanwarpal Dhugga Sieglinde Snapp Ernesto Adair Zepeda Villarreal (2023)
Article
Crop Breeding Expert Survey CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPPING SYSTEMS FOOD SECURITY CROPS
Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems
Tek Sapkota (2023)
Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.
Working paper
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
David Hodson (2022)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT RUSTS SURVEILLANCE SYSTEMS
Facundo Tabbita Iván Ortíz-Monasterios Francisco Javier Pinera-Chavez Maria Itria Ibba Carlos Guzman (2023)
BACKGROUND: Continuous development of new wheat varieties is necessary to satisfy the demands of farmers, industry, and consumers. The evaluation of candidate genotypes for commercial release under different on-farm conditions is a strategy that has been strongly recommended to assess the performance and stability of new cultivars in heterogeneous environments and under different farming systems. The main objectives of this study were to evaluate the grain yield and quality performance of ten different genotypes across six contrasting farmers' field conditions with different irrigation and nitrogen fertilization levels, and to develop suggestions to aid breeding programs and farmers to use resources more efficiently. Genotype and genotype by environment (GGE) interaction biplot analyses were used to identify the genotypes with the strongest performance and greatest stability in the Yaqui Valley. RESULTS: Analyses showed that some traits were mainly explained by the genotype effect, others by the field management conditions, and the rest by combined effects. The most representative and diverse field conditions in the Yaqui Valley were also identified, a useful strategy when breeders have limited resources. The independent effects of irrigation and nitrogen levels and their interaction were analyzed for each trait. The results showed that full irrigation was not always necessary to maximize grain yield in the Yaqui Valley. Other suggestions for more efficient use of resources are proposed. CONCLUSIONS: The combination of on-farm trials with GGE interaction analyses is an effective strategy to include in breeding programs to improve processes and resources. Identifying the most outstanding and stable genotypes under real on-farm systems is key to the development of novel cultivars adapted to different management and environmental conditions.
Article
Wheat Quality Bread Wheat Bread-Making CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOFT WHEAT QUALITY FARMING SYSTEMS
CIMMYT seed systems Interventions
AbduRahman Issa (2023)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SYSTEMS VALUE CHAINS POLICIES HYBRIDS MAIZE WOMEN FARMERS