Búsqueda avanzada


Área de conocimiento




34 resultados, página 1 de 4

Revisiting the phylogeny and taxonomy of the Pithecellobium clade (Leguminosae, Caesalpinioideae) with new generic circumscriptions

Iván Tamayo-Cen Benjamin Torke JOSE ENRIQUE LOPEZ CONTRERAS GERMAN CARNEVALI FERNANDEZ CONCHA Ivón Mercedes Ramírez Morillo Lilia Lorena Can Itza RODRIGO STEFANO DUNO (2022, [Artículo])

We present the most complete molecular phylogeny to date of the Pithecellobium clade of subfamily Caesalpinioideae. This neotropical group was informally recognised (as the Pithecellobium alliance) at the end of the 20th century by Barneby and Grimes (1996) and includes five genera and 33 species distributed from the southern United States and Caribbean Islands to north-eastern South America. Our aims were to further test the monophyly of the group and its genera and to identify sister group relationships within and amongst the genera. A phylogenetic analysis of nuclear ribosomal DNA sequences (ITS and ETS) was performed. The results provide further support for the monophyly of the Pithecellobium clade. The genera Ebenopsis, Pithecellobium and Sphinga were strongly supported as monophyletic. Havardia and Painteria were found to be non-monophyletic, prompting their re-circumscriptions and the description of two new genera: Gretheria and Ricoa. New combinations are made for the three species transferred to the new genera. © Iván Tamayo-Cen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

FABACEAE INGEAE INGOID CLADE MIMOSOID NEW WORLD PHYLOGENETIC SYSTEMATIC TAXONOMY BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) TAXONOMÍA VEGETAL TAXONOMÍA VEGETAL

Re-establishment of the genus Pseudalbizzia (Leguminosae, Caesalpinioideae, mimosoid clade): the New World species formerly placed in Albizia

GABRIELA AVILES PERAZA Erik Koenen Ricarda Riina Colin Hughes Jens Ringelberg GERMAN CARNEVALI FERNANDEZ CONCHA Ivón Mercedes Ramírez Morillo Lilia Lorena Can Itza Iván Tamayo-Cen Jorge Humberto Ramírez Prado Xavier Cornejo Sawai Mattapha RODRIGO STEFANO DUNO (2022, [Artículo])

Following recent mimosoid phylogenetic and phylogenomic studies demonstrating the non-monophyly of the genus Albizia, we present a new molecular phylogeny focused on the neotropical species in the genus, with much denser taxon sampling than previous studies. Our aims were to test the monophyly of the neotropical section Arthrosamanea, resolve species relationships, and gain insights into the evolution of fruit morphology. We perform a Bayesian phylogenetic analysis of sequences of nuclear internal and external transcribed spacer regions and trace the evolution of fruit dehiscence and lomentiform pods. Our results find further support for the non-monophyly of the genus Albizia, and confirm the previously proposed segregation of

Hesperalbizia, Hydrochorea, Balizia and Pseudosamanea. All species that were sampled from section Arthrosamanea form a clade that is sister to a clade composed of Jupunba, Punjuba, Balizia and Hydrochorea. We find that lomentiform fruits are independently derived from indehiscent septate fruits in both Hydrochorea and section Arthrosamanea. Our results show that morphological adaptations to hydrochory, associated with shifts into seasonally flooded habitats, have occurred several times independently in different geographic areas and different lineages within the ingoid clade. This suggests that environmental conditions have likely played a key role in the evolution of fruit types in Albizia and related genera. We resurrect the name Pseudalbizzia to accommodate the species of section Arthrosamanea, except for two species that were not sampled here but have been shown in other studies to be more closely related to other ingoid genera and we restrict the name Albizia s.s. to the species from Africa, Madagascar, Asia, Australia, and the Pacific. Twenty-one new nomenclatural combinations in Pseudalbizzia are proposed, including 16 species and 5 infraspecific varietal names. In addition to the type species Pseudalbizzia berteroana, the genus has 17 species distributed across tropical regions of the Americas, including the Caribbean. Finally, a new infrageneric classification into five sections is proposed and a distribution map of the species of Pseudalbizzia is presented.

ARTHROSAMANEA HYDROCHORY MONOPHYLY NEOTROPICS PHYLOGENY TAXONOMY BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) TAXONOMÍA VEGETAL TAXONOMÍA VEGETAL

Using an incomplete block design to allocate lines to environments improves sparse genome-based prediction in plant breeding

Osval Antonio Montesinos-Lopez ABELARDO MONTESINOS LOPEZ RICARDO ACOSTA DIAZ Rajeev Varshney Jose Crossa ALISON BENTLEY (2022, [Artículo])

Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed. A common approach is to guarantee a proportion of nonoverlapping and overlapping lines allocated randomly in locations, that is, lines appearing in some locations but not in all. In this study we propose using incomplete block designs (IBD), principally, for the allocation of lines to locations in such a way that not all lines are observed in all locations. We compare this allocation with a random allocation of lines to locations guaranteeing that the lines are allocated to

the same number of locations as under the IBD design. We implemented this benchmarking on several crop data sets under the Bayesian genomic best linear unbiased predictor (GBLUP) model, finding that allocation under the principle of IBD outperformed random allocation by between 1.4% and 26.5% across locations, traits, and data sets in terms of mean square error. Although a wide range of performance improvements were observed, our results provide evidence that using IBD for the allocation of lines to locations can help improve predictive performance compared with random allocation. This has the potential to be applied to large-scale plant breeding programs.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA Bayes Theorem Genome Inflammatory Bowel Diseases Models, Genetic Plant Breeding