Búsqueda avanzada


Área de conocimiento




33 resultados, página 1 de 4

Review of Nationally Determined Contributions (NCD) of Kenya from the perspective of food systems

Tek Sapkota (2023, [Documento de trabajo])

Agriculture is one of the fundamental pillars of the 2022–2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway. Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES

Research for development approaches in mixed crop-livestock systems of the Ethiopian highlands

Million Gebreyes James Hammond Lulseged Tamene Getachew Agegnehu Rabe Yahaya Anthony Whitbread (2023, [Artículo])

This study presents processes and success stories that emerged from Africa RISING's Research for Development project in the Ethiopian Highlands. The project has tested a combination of participatory tools at multiple levels, with systems thinking and concern for sustainable and diversified livelihoods. Bottom-up approaches guided the selection of technological interventions that could address the priority farming system challenges of the communities, leading to higher uptake levels and increased impact. Joint learning, appropriate technology selection, and the creation of an enabling environment such as the formation of farmer research groups, the establishment of innovation platforms, and capacity development for institutional and technical innovations were key to this study. The study concludes by identifying key lessons that focus more on matching innovations to community needs and geographies, systems orientation/integration of innovations, stepwise approaches to enhance the adoption of innovations, documenting farmers' capacity to modify innovations, building successful partnerships, and facilitating wider scaling of innovations for future implementation of agricultural research for development projects.

Action Research Systems Thinking CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION PARTNERSHIPS SCALING UP INTEGRATED CROP-LIVESTOCK SYSTEMS

Behavior of private retailers in a regulated input market: An empirical analysis of the fertilizer subsidy policy in Nepal

Shriniwas Gautam Dyutiman Choudhary Dil Bahadur Rahut (2022, [Artículo])

The private sector in Nepal participates in the regulated import and distribution of three types of subsidized fertilizer. However, almost 55% of the agrovets (family-owned microenterprises) that retail agricultural inputs do not comply. Many farmers rely on the fertilizer purchased through these agrovets, including subsidized ones. There is no private sector importer of the three types of fertilizer covered by the subsidy program, which indicates that the agrovets either acquire these through leakage in the government distribution system or through illegal cross-border trade from India, both of which are considered legal noncompliance. We discern the determinants for this noncompliant behavior of agrovets using logistic regression. The results from logistic regression suggest that the agrovets that are more likely to comply are registered, have membership in business associations, and have a higher number of competitors. Those with diversified business portfolios and covering a greater number of districts are less likely to comply. Key informants, consisting of both public and private sector stakeholders, were solicited for their views on solving this noncompliant behavior. The private sector unanimously asserts the need for deregulation of fertilizer imports and the participation of agrovets in the distribution of the subsidized fertilizer. In contrast, the public sector is skeptical of the ability and trustworthiness of the private sector in the import and distribution of quality fertilizer. We propose a middle ground to mitigate private sector noncompliance and suggest a policy revisit to increase the fertilizer supply and distribution efficiency.

Fertilizer Subsidy Policy Input Retailers CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FERTILIZERS POLICIES MARKET REGULATIONS

Review of Nationally Determined Contributions (NCD) of China from the perspective of food systems

Tek Sapkota (2023, [Documento de trabajo])

China is the largest emitter of greenhouse gases (GHG) and one of the countries most affected by climate change. China's food systems are a major contributor to climate change: in 2018, China's food systems emitted 1.09 billion tons of carbondioxide equivalent (CO2eq) GHGs, accounting for 8.2% of total national GHG emissions and 2% of global emissions. According to the Third National Communication (TNC) Report, in 2010, GHG emissions from energy, industrial processes, agriculture, and waste accounted for 78.6%, 12.3%, 7.9%, and 1.2% of total emissions, respectively, (excluding emissions from land use, land-use change and forestry (LULUCF). Total GHG emissions from the waste sector in 2010 were 132 Mt CO2 eq, with municipal solid waste landfills accounting for 56 Mt. The average temperature in China has risen by 1.1°C over the last century (1908–2007), while nationally averaged precipitation amounts have increased significantly over the last 50 years. The sea level and sea surface temperature have risen by 90 mm and 0.9°C respectively in the last 30 years. A regional climate model predicted an annual mean temperature increase of 1.3–2.1°C by 2020 (2.3–3.3°C by 2050), while another model predicted a 1–1.6°C temperature increase and a 3.3–3.7 percent increase in precipitation between 2011 and 2020, depending on the emissions scenario. By 2030, sea level rise along coastal areas could be 0.01–0.16 meters, increasing the likelihood of flooding and intensified storm surges and causing the degradation of wetlands, mangroves, and coral reefs. Addressing climate change is a common human cause, and China places a high value on combating climate change. Climate change has been incorporated into national economic and social development plans, with equal emphasis on mitigation and adaptation to climate change, including an updated Nationally Determined Contribution (NDC) in 2021. The following overarching targets are included in China's updated NDC: • Peaking carbon dioxide emissions “before 2030” and achieving carbon neutrality before 2060. • Lowering carbon intensity by “over 65%” by 2030 from the 2005 level. • Increasing forest stock volume by around 6 billion cubic meters in 2030 from the 2005 level. The targets have come from several commitments made at various events, while China has explained very well the process adopted to produce its third national communication report. An examination of China's NDC reveals that it has failed to establish quantifiable and measurable targets in the agricultural sectors. According to the analysis of the breakdown of food systems and their inclusion in the NDC, the majority of food system activities are poorly mentioned. China's interventions or ambitions in this sector have received very little attention. The adaptation component is mentioned in the NDC, but is not found to be sector-specific or comprehensive. A few studies have rated the Chinese NDC as insufficient, one of the reasons being its failure to list the breakdown of each sector's clear pathway to achieving its goals. China's NDC lacks quantified data on food system sub-sectors. Climate Action Trackers' "Insufficient" rating indicates that China's domestic target for 2030 requires significant improvements to be consistent with the Paris Agreement's target of 1.5°C temperature limit. Some efforts are being made: for example, scientists from the Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA-CAAS) have developed methods for calculating GHG emissions from livestock and poultry farmers that have been published as an industrial standard by the Ministry of Agriculture and Rural Affairs, PRC (Prof Hongmin Dong, personal communication) but this still needs to be consolidated and linked to China’s NDC. The updated Nationally Determined Contributions fall short of quantifiable targets in agriculture and food systems as a whole, necessitating clear pathways. China's NDC is found to be heavily focused on a few sectors, including energy, transportation, and urban-rural development. The agricultural sectors' and food systems' targets are vague, and China's agrifood system has a large carbon footprint. As a result, China should focus on managing the food system (production, processing, transportation, and food waste management) to reduce carbon emissions. Furthermore, China should take additional measures to make its climate actions more comprehensive, quantifiable, and measurable, such as setting ambitious and clear targets for the agriculture sector, including activity-specific GHG-reduction pathways; prioritizing food waste and loss reduction and management; promoting sustainable livestock production and low carbon diets; reducing chemical pollution; minimizing the use of fossil fuel in the agri-system and focusing on developing green jobs, technological advancement and promoting climate-smart agriculture; promoting indigenous practices and locally led adaptation; restoring degraded agricultural soils and enhancing cooperation and private partnership. China should also prepare detailed NDC implementation plans including actions and the GHG reduction from conditional targets.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GREENHOUSE GAS EMISSIONS CLIMATE CHANGE FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES

Sustainability evaluation of contrasting milpa systems in the Yucatán Peninsula, Mexico

Santiago Lopez-Ridaura Tania Carolina Camacho Villa (2023, [Artículo])

The milpa agroecosystem is an intercropping of maize, beans, squash and other crops, developed in Mesoamerica, and its adoption is widely variable across climates and regions. An example of particular interest is the Yucatan Peninsula in Mexico, which holds highly diverse milpas, drawing on ancestral Mayan knowledge. Traditional milpas have been described as sustainable resource management models, based on long rotations within a slash-and-burn cycle in forest areas. Nevertheless, due to modernization and intensification processes, new variants of the approach have appeared. The objective of this study was to evaluate the sustainability of three milpa systems (traditional, continuous, and mechanized) in four case studies across the Peninsula, with emphasis on food self-sufficiency, social inclusion and adoption of innovations promoted by a development project. The Framework for the Evaluation of Agroecosystems using Indicators (MESMIS, for its Spanish acronym) was used for its flexible, participatory approach. A common group of indicators was developed despite regional differences between study cases, with a high level of farmer participation throughout the iterative process. The results show lower crop yields in traditional systems, but with lower inputs costs and pesticide use. In contrast, continuous milpas had higher value in terms of crop diversity, food security, social inclusion, and innovation adoption. Mechanized milpas had lower weed control costs. Profitability of cash crops and the proportion of forest were high in all systems. Highly adopted innovations across milpa types and study cases included spatial crop arrangement and the use of residues as mulches. However, most innovations are not adapted to local conditions, and do not address climate change. Further, women and youth participation is low, especially in traditional systems.

Milpa Intensification Processes Women and Youth Participation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABILITY INTERCROPPING FOOD SECURITY INNOVATION SOCIAL INCLUSION AGROECOSYSTEMS CASE STUDIES