Filtros
Filtrar por:
Tipo de publicación
- Artículo (50)
- Objeto de congreso (7)
- Capítulo de libro (3)
- Artículo (2)
Autores
- Govindan Velu (4)
- Alison Bentley (3)
- Bekele Abeyo (3)
- C.M. Parihar (3)
- Francisco Pinto (3)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (55)
- Repositorio Institucional Zaloamati (3)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (2)
Tipos de Acceso
- oa:openAccess (60)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (55)
- YIELDS (31)
- MAIZE (16)
- WHEAT (14)
- GRAIN (13)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Hussein Shimelis Chris Ojiewo Abhishek Rathore (2023, [Artículo])
Pearl millet (Pennisetum glaucum [L.] R. Br.) is a nutrient-dense, relatively drought-tolerant cereal crop cultivated in dry regions worldwide. The crop is under-researched, and its grain yield is low (< 0.8 tons ha−1) and stagnant in the major production regions, including Burkina Faso. The low productivity of pearl millet is mainly attributable to a lack of improved varieties, Striga hermonthica [Sh] infestation, downy mildew infection, and recurrent heat and drought stress. Developing high-yielding and Striga-resistant pearl millet varieties that satisfy the farmers’ and market needs requires the identification of yield-promoting genes linked to economic traits to facilitate marker-assisted selection and gene pyramiding. The objective of this study was to undertake genome-wide association analyses of agronomic traits and Sh resistance among 150 pearl millet genotypes to identify genetic markers for marker-assisted breeding and trait introgression. The pearl millet genotypes were phenotyped in Sh hotspot fields and screen house conditions. Twenty-nine million single nucleotide polymorphisms (SNPs) initially generated from 345 pearl millet genotypes were filtered, and 256 K SNPs were selected and used in the present study. Phenotypic data were collected on days to flowering, plant height, number of tillers, panicle length, panicle weight, thousand-grain weight, grain weight, number of emerged Striga and area under the Striga number progress curve (ASNPC). Agronomic and Sh parameters were subjected to combined analysis of variance, while genome-wide association analysis was performed on phenotypic and SNPs data. Significant differences (P < 0.001) were detected among the assessed pearl millet genotypes for Sh parameters and agronomic traits. Further, there were significant genotype by Sh interaction for the number of Sh and ASNPC. Twenty-eight SNPs were significantly associated with a low number of emerged Sh located on chromosomes 1, 2, 3, 4, 6, and 7. Four SNPs were associated with days-to-50%-flowering on chromosomes 3, 5, 6, and 7, while five were associated with panicle length on chromosomes 2, 3, and 4. Seven SNPs were linked to thousand-grain weight on chromosomes 2, 3, and 6. The putative SNP markers associated with a low number of emerged Sh and agronomic traits in the assessed genotypes are valuable genomic resources for accelerated breeding and variety deployment of pearl millet with Sh resistance and farmer- and market-preferred agronomic traits.
High-Yielding Varieties Striga-Resistant Agronomic Parameters CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOME-WIDE ASSOCIATION STUDIES STRIGA HERMONTHICA PEARL MILLET
Genetic improvement of global wheat, including progress for enhancing insect resistance
Leonardo Abdiel Crespo Herrera (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC IMPROVEMENT WHEAT BREEDING CLIMATE CHANGE DISEASE RESISTANCE YIELDS
Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion
Urs Schulthess Azam Lashkari (2022, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RELIEF UNMANNED AERIAL VEHICLES WINTER WHEAT YIELDS
Mesut KESER fatih ozdemir Pietro Bartolini (2022, [Artículo])
Germplasm Exchange International Nurseries Multi-Locations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WINTER WHEAT BREEDING GERMPLASM YIELDS DATA
Dana Fuerst SHAILESH YADAV Rajib Roychowdhury Carolina Sansaloni Sariel Hübner (2022, [Artículo])
Emmer Wheat CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENETIC VARIATION CLIMATE PHENOLOGY YIELDS MEDITERRANEAN CLIMATE
Martin van Ittersum (2023, [Artículo])
Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.
Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY
Testing innovations for adoption of newer and more adapted maize varieties
Michael Ndegwa Pieter Rutsaert Jason Donovan Jordan Chamberlin (2023, [Objeto de congreso])
Changing Production Conditions Genetic Innovations Maize Hybrids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TESTING MAIZE VARIETIES YIELDS FARMERS EXPERIMENTATION
C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Shankar Lal Jat Mahesh Gathala Upendra Singh (2023, [Artículo])
This study evaluated the impact of contrasting tillage and nitrogen management options on the growth, yield attributes, and yield of maize (Zea mays L.) in a conservation agriculture (CA)-based maize-wheat (Triticum aestivum L.) system. The field experiment was conducted during the rainy (kharif) seasons of 2020 and 2021 at the research farm of ICAR-Indian Agricultural Research Institute (IARI), New Delhi. The experiment was conducted in a split plot design with three tillage practices [conventional tillage with residue (CT), zero tillage with residue (ZT) and permanent beds with residue (PB)] as main plot treatments and in sub-plots five nitrogen management options [Control (without N fertilization), recommended dose of N @150 kg N/ha, Green Seeker-GS based application of split applied N, N applied as basal through urea super granules-USG + GS based application and 100% basal application of slow release fertilizer (SRF) @150 kg N/ha] with three replications. Results showed that both tillage and nitrogen management options had a significant impact on maize growth, yield attributes, and yield in both seasons. However, time to anthesis and physiological maturity were not significantly affected. Yield attributes were highest in the permanent beds and zero tillage plots, with similar numbers of grains per cob (486.1 and 468.6). The highest leaf area index (LAI) at 60 DAP was observed in PB (5.79), followed by ZT(5.68) and the lowest was recorded in CT (5.25) plots. The highest grain yield (2-year mean basis) was recorded with permanent beds plots (5516 kg/ha), while the lowest
was observed with conventional tillage (4931 kg/ha). Therefore, the study highlights the importance of CA practices for improving maize growth and yield, and suggests that farmers can achieve better results through the adoption of CA-based permanent beds and use of USG as nitrogen management option.
Green Seeker Urea Super Granules CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE UREA YIELDS ZERO TILLAGE NITROGEN
Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system
Alison Laing Akbar Hossain (2023, [Artículo])
The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS