Búsqueda avanzada


Área de conocimiento




66 resultados, página 5 de 7

¿Por qué revalorizar los nances y sus variedades de colores?

Diana Elidé Burgos Lugo MARIA TERESA CASTILLO BURGUETE DANIELA ALEJANDRA MARTINEZ NATAREN (2023, [Artículo])

Los nances, frutales ancestrales con distribución desde el sureste mexicano hasta Sudamérica, están dejando de cultivarse y poco se conoce sobre sus variedades con frutos de colores, debido a los cambios en los hábitos de consumo y estilo de vida de las personas. El manejo tradicional de los nances se realiza en huertos familiares y parcelas de cultivo, cuyos frutos son recolectados, en ocasiones, con la participación familiar. Las formas de uso culinario de los nances, son parte de la cultura maya y ofrecen beneficios para la salud y la economía de los habitantes de comunidades rurales. Invitamos a conocer y apreciar los frutos de estos árboles que todavía están a nuestro alcance.

BYRSONIMA BUCIDIFOLIA BYRSONIMA CRASSIFOLIA CONOCIMIENTO TRADICIONAL FRUTALES SUBUTILIZADOS PROPIEDADES FUNCIONALES BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Soil CO2 efflux fluctuates in three different annual seasons in a semideciduous tropical forest in Yucatan, Mexico

El flujo de CO2 del suelo fluctúa en tres temporadas del año en un bosque tropical semideciduo de Yucatán, México

Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])

Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.

EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Object manipulation by collaborative autonomous underwater vehicles driven by a model-free second-order sliding mode controller with finite-time convergence

JOSUE GONZALEZ GARCIA (2023, [Artículo])

https://orcid.org/0000-0001-5657-380X

The use of Autonomous Underwater Vehicles (AUV) has expanded in recent years to include them in inspection, maintenance, and repair missions. These missions require the automation of tasks such as autonomous navigation and station-keeping, which are pretty challenging due to the complexity of the vehicle itself and the underwater environment. Traditional control strategies have been used to deal with those problems before, but their performance is limited since they do not consider non-linearities, external disturbances, or model uncertainties. Non-traditional controllers have been explored too, but have shortcomings such as being model-based, parameter-dependant, or so. Additionally, the nature of some objects implies the involvement of multiple vehicles to manipulate them, making the manipulation mission even harder. Collaboration of AUVs is a strong challenge since underwater communications are limited or null. An advanced control strategy dealing with the trajectory tracking and the station-keeping problem would be desirable for simplicity and robustness. If this controller could also help coordinate multiple vehicles without requiring them to communicate with each other, it would make collaborative manipulation tasks reachable. For this purpose, a model-free high-order Sliding Mode Controller (SMC) is presented in this project. Unlike other control approaches, the proposed control strategy achieves finite-time convergence to a practical zero error in a time-base that the user can arbitrarily define. This characteristic will be used to coordinate the navigation of two AUVs to manipulate an object underwater. The performance of the proposed controller was evaluated by numerical simulations and experiments in a semi-Olympic swimming pool and compared with classic and state-of-the-art control strategies regarding trajectory tracking and station-keeping problems. Results have shown that the proposed controller can achieve finite-time convergence of the tracking errors to a practical zero value in the predefined time-base. Results also demonstrated that the convergence time could be arbitrarily selected by the user and achieved by the controller resulting in, as far as the author knows, the first controller with this characteristic for AUVs navigation. The simulations and experiments also showed that the proposed controller outperformed classical and state-of-the-art controllers regarding the Root Mean Square of the tracking errors and energy consumption. Finally, the proposed model-free high-order SMC coordinated two BlueROV2 vehicles in a collaborative manipulation mission without vehicle-to-vehicle communication. Numerical simulation results confirmed that the proposed controller could manage the vehicles to follow a predefined coordinated trajectory to approach, grip, transport, and release an object without communicating with each other.

Doctor of Philosophy In Engineering Science

INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LA INSTRUMENTACIÓN INGENIERÍA DE CONTROL INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA NAVAL VEHÍCULOS SUBMARINOS

Physiological ecology of Mexican CAM plants: history, progress, and opportunities

Joel David Flores Rivas Oscar Briones Villareal JOSE LUIS ANDRADE (2022, [Artículo])

"In Mexico, plants with crassulacean acid metabolism (CAM) are part of the Mexican culture, have different uses and are even emblematic. Unfortunately, only a small fraction of the Mexican CAM plants has been studied physiologically. For this review, the following questions were considered: What ecophysiological studies have been conducted with CAM species native to Mexico? What ecophysiological processes in Mexican CAM plants are the most studied? What type of ecophysiological studies with CAM plants are still needed? A database of scientific studies on CAM plant species from Mexico was documented, including field and laboratory works for species widely distributed, and those studies made outside Mexico with Mexican species. Physiological processes were grouped as germination, photosynthesis, and water relations. Most studies were done for CAM species of Cactaceae, Bromeliaceae, Asparagaceae and Orchidaceae, andmost ecophysiological studies have been done on germination of cacti. Field and laboratory studies on photosynthesis and water relations were mostly for terrestrial cacti and epiphytic bromeliads. There were few physiological studies with CAM seedlings in Mexico and few studies using stable isotopes of water and carbon of CAM plants in the field. More field and laboratory studies of physiological responses and plasticity of CAM plants to multiple stress factors are required to model plant responses to global climate change. In general, more physiological studies are essential for all CAM species and for species of the genus Clusia, with C3-CAM and CAM members, which can become ecologically important under some climate change scenarios."

Asparagaceae Bromeliaceae Cactaceae Germination Photosynthesis Water relations Orchidaceae BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) BIOLOGÍA VEGETAL (BOTÁNICA)

THE RIGHT TO THE CITY AND URBAN-RURAL LINKAGES. COMMUNITY PARTICIPATION IN THE METROPOLITAN AREA OF TUXTLA GUTIERREZ, CHIAPAS.

Briseida Corzo Rivera Gabriel Castañeda Nolasco (2023, [Artículo, Artículo])

Access to water is a common struggle of the communities in the state of Chiapas, with the effects of urban expansion these struggles increase and with them the challenges that these populations already face, having a greater impact on the rural environment. The struggles to satisfy this basic need are a factor that has triggered processes that promote community participation. Based on a qualitative analysis, this paper compares two existing forms of participation in the rural communities of the Metropolitan Area of Tuxtla Gutierrez that allow the population to manage actions to improve their quality of life. The objective is to analyze how these processes promote or restrict the empowerment of the community and allow progress, not only in the population's access to water, but also in the construction of the right to the city. From the urban-rural linkages, the right to the city is discussed beyond the city, addressing other territories. The study identifies factors that show changes in the participation of the populations and strengthen the community, as well as factors in the relationships of the community and of the community with other actors that limit the scope of the processes.

Participation Right to the city Urban-rural linkages Access to water participación, derecho a la ciudad, vínculos urbano-rurales, acceso al agua. CIENCIAS SOCIALES CIENCIAS SOCIALES

Diversifying with grain legumes amplifies carbon in management-sensitive soil organic carbon pools on smallholder farms

Regis Chikowo Sieglinde Snapp (2023, [Artículo])

Crop diversification with grain legumes has been advocated as a means to increase agroecological resilience, diversify livelihoods, boost household nutrition, and enhance soil health and fertility in cereal-based cropping systems in sub-Saharan Africa and around the world. Soil organic carbon (SOC) is a primary indicator of soil health and there is limited data regarding SOC pools and grain legume diversification on smallholder farms where soils are often marginal. In Malawi, a range of legume diversification options are under investigation, including rotations and a doubled-up legume rotation (DLR) system in which two compatible legumes are intercropped and then rotated with a cereal. The impact of the DLR system on SOC has not yet been determined, and there is a lack of evidence regarding SOC status over a gradient of simple to complex grain legume diversified systems. We address this knowledge gap by evaluating these systems in comparison to continuous sole maize (Zea mays L.) at three on-farm trial sites in central Malawi. After six years of trial establishment, we measured SOC in bulk soils and aggregate fractions and in faster cycling SOC pools that respond more rapidly to management practices, including water extractable organic carbon (WEOC), particulate organic matter carbon (POM-C), potentially mineralizable carbon (C), and macroaggregate C. Cropping treatment differences were not seen in bulk SOC or total N, but they were apparent in SOC pools with a shorter turnover time. The DLR system of intercropped pigeonpea (Cajanus cajan (L.) Millsp.) and groundnut (Arachis hypogaea L.) rotated with maize had higher WEOC, POM-C, potentially mineralizable C, macroaggregate and microaggregate C values than continuous maize. Of the single legume rotations, the pigeonpea-maize rotation had more mineralizable C and microaggregate C compared to continuous maize, while the groundnut-maize rotation had similar C values to the maize system. Overall, this study shows the potential for crop rotations diversified with grain legumes to enhance C in management sensitive SOC pools, and it is one of the first reports to show this effect on smallholder farm sites.

Crop Diversification Water Extractable Organic Carbon CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DIVERSIFICATION LEGUMES PARTICULATE ORGANIC MATTER SOIL ORGANIC CARBON

Diversidad arbórea y carbono almacenado en selvas bajo manejo forestal comunitario en Yucatán, México

Tree diversity and carbon stored in communally managed tropical forests in Yucatan, Mexico

MARIA CAMILA HURTADO TORRES JUAN MANUEL DUPUY RADA PATRICIA IRENE MONTAÑEZ ESCALANTE JUAN JOSE MARIA JIMENEZ OSORNIO (2022, [Artículo])

El manejo forestal comunitario sustentable favorece la economía de las comunidades rurales sin comprometer la capacidad de regeneración ni los servicios ecosistémicos que brindan las selvas, como el almacenamiento de carbono. Esta actividad ha sido ampliamente documentada en la Península de Yucatán, pero escasamente evaluada en el estado de Yucatán. En esta investigación se hizo una comparación de composición arbórea, estructura, diversidad y carbono almacenado en la biomasa aérea en tres áreas de selva mediana subcaducifolia con diferente tiempo de regeneración después de un aprovechamiento forestal en el ejido San Agustín (AAF1, AAF10 y AAF+50 años). En cada una se establecieron dos conglomerados conformados por cuatro parcelas circulares de 400 m 2, en las que se identificaron y midieron (diámetro y altura) todos los árboles de diámetro mayor o igual a 7.5 cm. Se analizó la distribución de tamaños de los árboles, la diversidad de especies, su valor de importancia relativo y la biomasa aérea (a partir de ecuaciones alométricas). La especie más dominante fue Bursera simaruba y el AAF+50 presentó la menor dominancia. La distribución de clases diamétricas no varió entre las áreas de aprovechamiento y mostró un patrón de J invertida, lo cual sugiere un alto potencial de regeneración. La diversidad tampoco varió entre las áreas de aprovechamiento, mientras que el carbono almacenado en la biomasa aérea sí, siendo mayor en el AAF+50 (65.2 t /ha). Los resultados indican que el plan de manejo establecido por el ejido no ha afectado la diversidad arbórea ni su potencial de regeneración y permite un alto almacenamiento de carbono.

APROVECHAMIENTO FORESTAL BIOMASA AÉREA DISTRIBUCIÓN DE TAMAÑOS DIVERSIDAD VERDADERA SERVICIOS ECOSISTEMICOS SELVA MEDIANA SUBCADUCIFOLIA BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Seed integrity, effect of temperature and storage time on germination of Populus luziarum and P. primaveralepensis, endangered subtropical species from Mexico

César Jacobo Pereira MIGUEL ANGEL MUÑIZ CASTRO JOSE ANTONIO VAZQUEZ GARCIA Joel David Flores Rivas ALEJANDRO MUÑOZ URIAS FRANCISCO MARTIN HUERTA MARTINEZ (2022, [Artículo])

"Background: Populus luziarum and P. primaveralepensis are endemic species of western Mexico; growing in riparian forests they are critically endangered. The best way to conserve their seeds is unknown, which could be limiting for their conservation.

Hypothesis: The germinability of both subtropical species is like that of boreal and template Salicaceae species that disperse seeds in spring and early summer, as they germinate quickly with high percentages, and rapidly lose their viability when stored at ambient temperature.

Studied species: Populus luziarum and P. primaveralepensis. Study site and dates: Western Trans-Mexican Volcanic Belt. Jalisco, Mexico. October 2019.

Methods: The physical integrity of the seeds was assessed by X-ray imaging and compared with germinability. In addition, the effect of storage time (nine weeks) under two temperatures (4 and 21 °C) on the percentage and mean germination rate was evaluated.

Results: No significant differences were found between physical integrity and germination in freshly collected seeds for both species. Germination in the first 24 hrs was 91 and 95 % for Populus luziarum and P. primaveralepensis, respectively (week 0). Germination percentages were lower when stored at 21 °C, but P. primaveralepensis was decreased more slowly.

Conclusions: Seeds of subtropical Populus respond similarly to those of species from temperate and boreal climates with early seed dispersal, a crucial condition for establishing ex situ reforestation and conservation programs."

Salicaceae Seed physical integrity Seed storage conditions Subtropical endemic species White poplars BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) BIOLOGÍA VEGETAL (BOTÁNICA)