Filtrar por:
Tipo de publicación
- Artículo (12)
Autores
- Abebe Menkir (2)
- Abhishek Rathore (2)
- Ana Luisa Garcia-Oliveira (2)
- Cesar Petroli (2)
- Chris Ojiewo (2)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (11)
- Repositorio Institucional CIBNOR (1)
Tipos de Acceso
- oa:openAccess (12)
Idiomas
- eng (12)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (11)
- MAIZE (3)
- BREEDING PROGRAMMES (2)
- ECOLOGÍA ANIMAL (2)
- GENETIC STRUCTURES (2)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Hussein Shimelis Chris Ojiewo Abhishek Rathore (2023, [Artículo])
Agronomic Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOME-WIDE ASSOCIATION STUDIES STRIGA HERMONTHICA PEARL MILLET
Gender, rainfall endowment, and farmers’ heterogeneity in wheat trait preferences in Ethiopia
Hom Nath Gartaula Moti Jaleta (2024, [Artículo])
Wheat is a vital cereal crop for smallholders in Ethiopia. Despite over fifty years of research on wheat varietal development, consideration of gendered trait preferences in developing target product profiles for wheat breeding is limited. To address this gap, our study used sex-disaggregated survey data and historical rainfall trends from the major wheat-growing regions in Ethiopia. The findings indicated heterogeneity in trait preferences based on gender and rainfall endowment. Men respondents tended to prefer wheat traits with high straw yield and disease-resistance potential, while women showed a greater appreciation for wheat traits related to good taste and cooking quality. Farmers in high rainfall areas seemed to prioritize high straw yield and disease resistance traits, while those in low rainfall areas valued good adaptation traits more highly. Most of the correlation coefficients among the preferred traits were positive, indicating that farmers seek wheat varieties with traits that serve multiple purposes. Understanding men's and women's preferences and incorporating them in breeding and seed systems could contribute to the development of more targeted and effective wheat varieties that meet the diverse needs of men and women farmers in Ethiopia.
Trait Preferences Multivariate Probit Model CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT AGRONOMIC CHARACTERS GENDER RAINFALL PROBIT ANALYSIS
Abiotic stress tolerance: Genetics, genomics, and breeding
Yunbi Xu Rajeev Varshney (2023, [Artículo])
Wheat Ancestors Modern Varieties Agronomic Performance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ABIOTIC STRESS GENETICS GENOMICS BREEDING GERMPLASM DROUGHT STRESS
Hussein Shimelis Chris Ojiewo Abhishek Rathore (2023, [Artículo])
Pearl millet (Pennisetum glaucum [L.] R. Br.) is a nutrient-dense, relatively drought-tolerant cereal crop cultivated in dry regions worldwide. The crop is under-researched, and its grain yield is low (< 0.8 tons ha−1) and stagnant in the major production regions, including Burkina Faso. The low productivity of pearl millet is mainly attributable to a lack of improved varieties, Striga hermonthica [Sh] infestation, downy mildew infection, and recurrent heat and drought stress. Developing high-yielding and Striga-resistant pearl millet varieties that satisfy the farmers’ and market needs requires the identification of yield-promoting genes linked to economic traits to facilitate marker-assisted selection and gene pyramiding. The objective of this study was to undertake genome-wide association analyses of agronomic traits and Sh resistance among 150 pearl millet genotypes to identify genetic markers for marker-assisted breeding and trait introgression. The pearl millet genotypes were phenotyped in Sh hotspot fields and screen house conditions. Twenty-nine million single nucleotide polymorphisms (SNPs) initially generated from 345 pearl millet genotypes were filtered, and 256 K SNPs were selected and used in the present study. Phenotypic data were collected on days to flowering, plant height, number of tillers, panicle length, panicle weight, thousand-grain weight, grain weight, number of emerged Striga and area under the Striga number progress curve (ASNPC). Agronomic and Sh parameters were subjected to combined analysis of variance, while genome-wide association analysis was performed on phenotypic and SNPs data. Significant differences (P < 0.001) were detected among the assessed pearl millet genotypes for Sh parameters and agronomic traits. Further, there were significant genotype by Sh interaction for the number of Sh and ASNPC. Twenty-eight SNPs were significantly associated with a low number of emerged Sh located on chromosomes 1, 2, 3, 4, 6, and 7. Four SNPs were associated with days-to-50%-flowering on chromosomes 3, 5, 6, and 7, while five were associated with panicle length on chromosomes 2, 3, and 4. Seven SNPs were linked to thousand-grain weight on chromosomes 2, 3, and 6. The putative SNP markers associated with a low number of emerged Sh and agronomic traits in the assessed genotypes are valuable genomic resources for accelerated breeding and variety deployment of pearl millet with Sh resistance and farmer- and market-preferred agronomic traits.
High-Yielding Varieties Striga-Resistant Agronomic Parameters CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOME-WIDE ASSOCIATION STUDIES STRIGA HERMONTHICA PEARL MILLET
Remote sensing of quality traits in cereal and arable production systems: A review
Zhenhai Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])
Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.
Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS
Melaku Gedil Ana Luisa Garcia-Oliveira Nnanna Unachukwu Cesar Petroli Sarah Hearne Abebe Menkir (2023, [Artículo])
Genetic Relationships Desirable Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC STRUCTURES INBRED LINES MAIZE BREEDING PROGRAMMES
Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments
Rodomiro Ortiz Paulino Pérez-Rodríguez Osval Antonio Montesinos-Lopez Jose Crossa (2023, [Artículo])
Potato Traits Cross-Validation Breeding Data CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LEAST SQUARES METHOD POTATOES ENVIRONMENT PLANT BREEDING
Sandesh Thapa Darbin Joshi (2022, [Artículo])
Heat Resilient Maize Phenotypic Coefficient of Variation Heritable Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENETIC PARAMETERS MAIZE HYBRIDS
Gopalareddy Krishnappa Govindan Velu (2023, [Artículo])
DArT-Seq Gene Mapping Yield Component Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT QUANTITATIVE TRAIT LOCI CANDIDATE GENES QUANTITATIVE TRAIT LOCI MAPPING YIELD COMPONENTS BIOFORTIFICATION