Filtrar por:
Tipo de publicación
- Artículo (13)
Autores
- ML JAT (4)
- Mahesh Gathala (4)
- Bekele Abeyo (2)
- João Vasco Silva (2)
- Manish Kakraliya (2)
Años de Publicación
Editores
Repositorios Orígen
Tipos de Acceso
- oa:openAccess (13)
Idiomas
- eng (13)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (13)
- NITROGEN-USE EFFICIENCY (5)
- WHEAT (4)
- CONSERVATION AGRICULTURE (3)
- NITROGEN (3)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
PRATEEK MADHAB BHATTACHARYA Apurba Chowdhury Tapamay Dhar Md. Saiful Islam Alison Laing Mahesh Gathala (2022, [Artículo])
Mechanized Transplanted Rice Weed Biomass Weed Density Weed Control Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HERBICIDES WEED CONTROL RICE ZERO TILLAGE MECHANIZATION
Advancing the science and practice of ecological nutrient management for smallholder farmers
Sieglinde Snapp (2022, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGROECOLOGY DEGRADATION NUTRIENT CYCLES NUTRIENT USE EFFICIENCY SOIL ORGANIC MATTER SMALLHOLDERS
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER