Filtrar por:
Tipo de publicación
- Artículo (54)
- Objeto de congreso (19)
- Capítulo de libro (2)
- Tesis de maestría (1)
Autores
- Jose Crossa (10)
- Alison Bentley (6)
- Matthew Paul Reynolds (6)
- Yoseph Beyene (6)
- Berhanu Tadesse Ertiro (5)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (73)
- CIATEQ Digital (1)
- Repositorio Institucional CICESE (1)
- Repositorio institucional de la Universidad de Colima (1)
Tipos de Acceso
- oa:openAccess (76)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (74)
- BREEDING (31)
- MAIZE (20)
- WHEAT (17)
- BREEDING PROGRAMMES (14)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments
Rodomiro Ortiz Paulino Pérez-Rodríguez Osval Antonio Montesinos-Lopez Jose Crossa (2023, [Artículo])
Potato Traits Cross-Validation Breeding Data CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LEAST SQUARES METHOD POTATOES ENVIRONMENT PLANT BREEDING
Ao Zhang (2023, [Artículo])
Erratic Rainfall Adverse Impacts Traditional Breeding Genome-Wide Association Study Field Drought CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DROUGHT TOLERANCE MAIZE SEEDLING STAGE SINGLE NUCLEOTIDE POLYMORPHISM
Guifang Lin Hui Chen Bin Tian Sunish Sehgal Jingzhong Xie Philomin Juliana Narinder Singh Sandesh Kumar Shrestha Ravi Singh Harold Trick Jesse Poland Robert Bowden guihua bai bikram gill (2022, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ALLELES CLONES GENE EXPRESSION GRASSES MUTATION RUSTS WHEAT BASIDIOMYCOTA DISEASE RESISTANCE GENETICS MOLECULAR CLONING PLANT BREEDING PLANT DISEASES
High Throughput-Phenotyping at CIMMYT: Experiences and needs
Francisco Pinto (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING PROGRAMMES GENETIC GAIN CROSS-BREEDING TECHNOLOGY YIELD POTENTIAL FIELD EXPERIMENTATION
Efficacy of plant breeding using genomic information
Osval Antonio Montesinos-Lopez Alison Bentley Carolina Saint Pierre Leonardo Abdiel Crespo Herrera Morten Lillemo Jose Crossa (2023, [Artículo])
Genomic Selection Genomic Prediction Genomic Best Linear Unbiased Predictor CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PLANT BREEDING GENOMICS MARKER-ASSISTED SELECTION ENVIRONMENT
Manje Gowda Prasanna Boddupalli Kanwarpal Dhugga Vijay Chaikam (2023, [Artículo])
R1-nj Marker Embryo Rescue False Positives False Detection Rate False Negative Rate CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DOUBLED HAPLOIDS MAIZE BREEDING PROGRAMMES INBRED LINES CROPS
Visualising the pattern of long-term genotype performance by leveraging a genomic prediction model
Vivi Arief Ian Delacy Thomas Payne Kaye Basford (2022, [Artículo])
Factor Analytic Genotype-By-Year Historical Data Relationship Matrix CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOTYPES PLANT BREEDING SPRING WHEAT RESEARCH
Francisco Pinto Matthew Paul Reynolds Robert Furbank (2024, [Artículo])
Deep Learning Object-Based Image Analysis Optical Imagery CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE IMAGE ANALYSIS PLANT BREEDING REMOTE SENSING MACHINE LEARNING
Osval Antonio Montesinos-Lopez ABELARDO MONTESINOS LOPEZ RICARDO ACOSTA DIAZ Rajeev Varshney Jose Crossa ALISON BENTLEY (2022, [Artículo])
Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed. A common approach is to guarantee a proportion of nonoverlapping and overlapping lines allocated randomly in locations, that is, lines appearing in some locations but not in all. In this study we propose using incomplete block designs (IBD), principally, for the allocation of lines to locations in such a way that not all lines are observed in all locations. We compare this allocation with a random allocation of lines to locations guaranteeing that the lines are allocated to
the same number of locations as under the IBD design. We implemented this benchmarking on several crop data sets under the Bayesian genomic best linear unbiased predictor (GBLUP) model, finding that allocation under the principle of IBD outperformed random allocation by between 1.4% and 26.5% across locations, traits, and data sets in terms of mean square error. Although a wide range of performance improvements were observed, our results provide evidence that using IBD for the allocation of lines to locations can help improve predictive performance compared with random allocation. This has the potential to be applied to large-scale plant breeding programs.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA Bayes Theorem Genome Inflammatory Bowel Diseases Models, Genetic Plant Breeding
Associations between endogenous spike cytokinins and grain-number traits in spring wheat genotypes
Gemma Molero Carolina Rivera-Amado Matthew Paul Reynolds John Foulkes (2024, [Artículo])
Spike Cytokinins Grain Number Fruiting Efficiency Wheat Breeding CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SPIKES CYTOKININS GRAIN FRUITING HARVEST INDEX WHEAT PLANT BREEDING