Filtros
Filtrar por:
Tipo de publicación
- Artículo (36)
- Capítulo de libro (2)
- Objeto de congreso (1)
- Tesis de doctorado (1)
- Tesis de maestría (1)
Autores
- Jose Crossa (11)
- Osval Antonio Montesinos-Lopez (7)
- Alison Bentley (5)
- XUECAI ZHANG (4)
- Brandon Alejandro Mosqueda González (2)
Años de Publicación
Editores
- Bernd Schierwater, University of Veterinary Medicine Hanover, Germany (1)
- CIATEQ, A.C. (1)
- CICESE (1)
- Gabriel Moreno-Hagelsieb, Wilfrid Laurier University, Canada (1)
- MDPI Open Access Journals (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (36)
- Repositorio Institucional CICESE (3)
- CIATEQ Digital (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Tipos de Acceso
- oa:openAccess (41)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (36)
- Genomic Prediction (13)
- MARKER-ASSISTED SELECTION (13)
- WHEAT (10)
- Genomic Selection (9)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Nick Fradgley Alison Bentley Keith Gardner Stéphanie M. Swarbreck (2023, [Artículo])
Sustainable Food Systems Genomic Prediction Genome-Wide Association Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT BREEDING MARKER-ASSISTED SELECTION VARIETIES FOOD SYSTEMS QUALITY
Editorial: Genomic selection: Lessons learned and perspectives
Johannes Martini Sarah Hearne Valentin Wimmer Fernando Henrique Toledo (2022, [Artículo])
Genomic Selection Selection Gain Breeding Schemes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING PROGRAMMES MARKER-ASSISTED SELECTION GENOTYPE ENVIRONMENT INTERACTION PLANT BREEDING
Rice–wheat comparative genomics: Gains and gaps
Akila Wijerathna-Yapa Md. Harun-Or-Rashid BHOJA BASNET (2023, [Artículo])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA COMPARATIVE GENOMICS GENES GENETIC ENGINEERING BREEDING RICE WHEAT
Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits
Osval Antonio Montesinos-Lopez Jose Crossa Francisco Javier Martin Vallejo (2018, [Artículo])
Deep Learning Genomic Prediction Bayesian Modeling Shared Data Resources CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BAYESIAN THEORY RESOURCES DATA BREEDING PROGRAMMES
Jose Crossa Osval Antonio Montesinos-Lopez Morten Lillemo (2024, [Artículo])
Multispectral Imaging Grain Yield Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN YIELDS HIGH-THROUGHPUT PHENOTYPING SPRING WHEAT
GIOVANNY COVARRUBIAS-PAZARAN Hans-Peter Piepho (2023, [Artículo])
Average Semivariance Linear Mixed Model Variance Component Estimation Polygenic Inheritance Oligogenic Inheritance Mendelian Inheritance CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MENDELISM GENETIC VARIANCE GENOME-WIDE ASSOCIATION STUDIES PHENOTYPES CHROMOSOME MAPPING
Martin van Ittersum (2023, [Artículo])
Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.
Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY
Hari Sankar Nayak C.M. Parihar Shankar Lal Jat ML JAT Ahmed Abdallah (2022, [Artículo])
Non-Linear Growth Model Nitrogen Remobilization Right Placement Precision Nitrogen Management CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GROWTH MODELS NITROGEN NUTRIENT MANAGEMENT
Genomic approaches for improving grain zinc and iron content in wheat
Chandan Roy Govindan Velu (2022, [Artículo])
Genome-Wide Association Study New Breeding Techniques Genomic Selection CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION MARKER-ASSISTED SELECTION MALNUTRITION BREEDING QUANTITATIVE TRAIT LOCI MAPPING SPEED BREEDING ZINC IRON WHEAT