Búsqueda avanzada


Área de conocimiento




28 resultados, página 2 de 3

Tallo: A global tree allometry and crown architecture database

Tommaso Jucker Jörg Fischer Jerome Chave David Coomes John Caspersen Arshad Ali Grace Jopaul Loubota Panzou Ted R. Feldpausch Daniel Falster Vladimir Andreevich Usoltsev Stephen Adu-Bredu Luciana Alves Mohammad Aminpour Bhely ANGOBOY Ilondea Niels Anten Cécile Antin yousef askari Rodrigo Muñoz Ayyappan Narayanan Patricia Balvanera Lindsay Banin Nicolas Barbier John J. Battles Hans Beeckman Yannick Enock Bocko Benjamin Bond_Lamberty Frans Bongers Samuel Bowers THOMAS BRADE Michiel van Breugel ARTHUR CHANTRAIN Rajeev Chaudhary JINGYU DAI Michele Dalponte Kangbéni Dimobe jean-christophe domec Jean-Louis Doucet Remko Duursma Moisés Enriquez KARIN Y. VAN EWIJK WILLIAM FARFAN_RIOS Adeline FAYOLLE ERIC FORNI David Forrester Hammad Gilani John Godlee Sylvie Gourlet-Fleury Matthias Haeni Jefferson Hall Jie He Andreas Hemp JOSE LUIS HERNANDEZ STEFANONI Steven Higgins ROBERT J. HOLDAWAY Kiramat Hussain Lindsay Hutley Tomoaki Ichie Yoshiko Iida Hai Jiang Puspa Raj Joshi Seyed Hasan Kaboli Maryam Kazempour Larsary Tanaka Kenzo Brian Kloeppel Takashi Kohyama Suwash Kunwar Shem Kuyah Jakub Kvasnica Siliang Lin Emily Lines Hongyan Liu CRAIG LORIMER Joel Loumeto Yadvinder Malhi Peter Marshall Eskil Mattsson Radim Matula Jorge Arturo Meave del Castillo Sylvanus Mensah XIANGCHENG MI Stephane MOMO Takoudjou Glenn Moncrieff Francisco Mora Sarath Nissanka Kevin O'Hara steven pearce Raphaël Pélissier Pablo Luis Peri Pierre Ploton Lourens Poorter mohsen javanmiri pour Hassan pourbabaei JUAN MANUEL DUPUY RADA Sabina Ribeiro Ryan Casey ANVAR SANAEI Jennifer Sanger Michael Schlund Giacomo Sellan Alexander Shenkin Bonaventure Sonké Frank Sterck Martin Svatek Kentaro Takagi Anna Trugman Farman Ullah Matthew Vadeboncoeur Ahmad Valipour Mark Vanderwel Alejandra Vovides Weiwei WANG Li Qiu Christian Wirth MURRAY WOODS Wenhua Xiang Fabiano de Aquino Ximenes Yaozhan Xu TOSHIHIRO YAMADA Miguel A. Zavala (2022, [Artículo])

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle. © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

ALLOMETRIC SCALING CROWN RADIUS FOREST BIOMASS STOCKS FOREST ECOLOGY REMOTE SENSING STEM DIAMETER TREE HEIGHT BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Climate-smart agricultural practices influence the fungal communities and soil properties under major agri-food systems

madhu choudhary ML JAT Parbodh Chander Sharma (2022, [Artículo])

Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical–chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice–wheat rotation, ScII is partial CA-based rice–wheat–mungbean, ScIII is partial CSA-based rice–wheat–mungbean, ScIV is partial CSA-based maize–wheat–mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.

Agriculture Management Fungal Community Diversity Indices Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE TILLAGE CLIMATE-SMART AGRICULTURE SOIL ORGANIC CARBON