Filtros
Filtrar por:
Tipo de publicación
- Artículo (3)
Autores
- Carlos Guzman (2)
- Angeline van Biljon (1)
- Facundo Tabbita (1)
- Fernando Arellano-Martín (1)
- JUAN MANUEL DUPUY RADA (1)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (2)
- Repositorio Institucional CICY (1)
Tipos de Acceso
- oa:openAccess (3)
Idiomas
- eng (3)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (2)
- ECOLOGÍA VEGETAL (2)
- HEAT STRESS (2)
- ALVEOGRAPHS (1)
- BIOLOGÍA VEGETAL (BOTÁNICA) (1)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
3 resultados, página 1 de 1
Maryke Labuschagne Carlos Guzman Jose Crossa Angeline van Biljon (2023, [Artículo])
Loaf Volume Durum Wheat Flour Protein Content CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ALVEOGRAPHS HARD WHEAT HEAT STRESS DROUGHT STRESS
Response to heat stress and glutenins allelic variation effects on quality traits in durum wheat
Facundo Tabbita Karim Ammar Maria Itria Ibba MARCO MACCAFERRI ROBERTO TUBEROSA Carlos Guzman (2024, [Artículo])
Gluten Quality Sedimentation Volume Wheat Quality CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GLUTEN QUALITY GLUTENINS HEAT STRESS WHEAT
Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])
Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.
EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL