Filtrar por:
Tipo de publicación
- Artículo (42)
- Tesis de maestría (17)
- Capítulo de libro (15)
- Otro (11)
- Trabajo terminal, especialidad (11)
Autores
- PEDRO RIVERA RUIZ (3)
- Frédéric Baudron (2)
- GUSTAVO URQUIZA BELTRAN (2)
- HECTOR GREGORIO CORTES TORRES (2)
- LAURA LILIA CASTRO GOMEZ (2)
Años de Publicación
Editores
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (12)
- CICESE (7)
- El autor (7)
- Universidad Autónoma Metropolitana (México). (7)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco, División de Ciencias y Artes para el Diseño, Departamento de Evaluación del Diseño en el Tiempo. (4)
Repositorios Orígen
- Repositorio Institucional Zaloamati (26)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (13)
- Repositorio Institucional CICESE (11)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (7)
- Repositorio institucional del IMTA (7)
Tipos de Acceso
- oa:openAccess (92)
Idiomas
Materias
- HUMANIDADES Y CIENCIAS DE LA CONDUCTA (29)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (21)
- CIENCIAS DE LAS ARTES Y LAS LETRAS (21)
- CIENCIAS SOCIALES (15)
- INGENIERÍA Y TECNOLOGÍA (13)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Oscar Juárez (2019, [Artículo])
White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females’ WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase. © 2019 Juárez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
androgen receptor, integrin, mitogen activated protein kinase, neuropeptide, transcriptome, tumor necrosis factor, argonaute protein, corticotropin releasing factor receptor, corticotropin releasing factor receptor 2, DEAD box protein, estradiol 17be BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)
Jonathan Gabriel Escobar Flores (2019, [Artículo])
In arid ecosystems, desert bighorn sheep are dependent on natural waterholes, particularly in summer when forage is scarce and environmental temperatures are high. To detect waterholes in Sierra Santa Isabel, which is the largest area of desert bighorn sheep habitat in the state of Baja California, Mexico, we used the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) from Sentinel-2 satellite images. Waterhole detection was based on the premise that sites with greater water availability, where NDVI was higher, can be identified by their density of vegetation greenness. For the detected waterholes, we estimated the escape terrain (presence of cliffs or steep, rocky slopes) around each by the vector ruggedness measure to determine their potential use by desert bighorn sheep based on the animals’ presence as documented by camera traps. We detected 14 waterholes with the NDVI of which 11 were known by land owners and 3 were unrecorded. Desert bighorn were not detected in waterholes with high values of escape terrain, i.e., flat areas. Waterhole detection by NDVI is a simple method, and with the assistance and knowledge of the inhabitants of the Sierra, it was possible to confirm the presence each waterhole in the field. © 2019 Escobar-Flores et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, bighorn sheep, environmental aspects and related phenomena, environmental parameters, habitat, Mexico, nonhuman, normalized difference vegetation index, normalized difference water index, water availability, waterhole, animal, bighorn sheep, CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS CIENCIA FORESTAL CIENCIA FORESTAL