Filtrar por:
Tipo de publicación
- Dataset (682)
- Artículo (372)
- Objeto de congreso (91)
- Libro (35)
- Tesis de doctorado (32)
Autores
- Thomas Payne (298)
- Ravi Singh (204)
- Jose Crossa (98)
- Karim Ammar (66)
- Susanne Dreisigacker (63)
Años de Publicación
Editores
- International Maize and Wheat Improvement Center (644)
- Instituto Mexicano de Tecnología del Agua (49)
- UASLP (19)
- Agenda Ambiental (16)
- International Maize & Wheat Improvement Centre (16)
Repositorios Orígen
- Repositorio Institucional de Datos y Software de Investigación del CIMMYT (682)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (426)
- Repositorio institucional del IMTA (67)
- Repositorio Institucional NINIVE (29)
- Repositorio Institucional CIBNOR (19)
Tipos de Acceso
- oa:openAccess (1273)
- oa:embargoedAccess (2)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (1277)
- MAIZE (103)
- WHEAT (85)
- CIENCIAS AGRARIAS (58)
- CLIMATE CHANGE (39)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
21st High Rainfall Wheat Screening Nursery
Ravi Singh Thomas Payne (2019, [Dataset])
CIMMYT annually distributes improved germplasm developed by its researchers and partners in international nurseries trials and experiments. The High Rainfall Wheat Screening Nursery (HRWSN) contains spring bread wheat (Triticum aestivum) germplasm adapted to high rainfall areas (Mega-environment 2).
3rd Wheat Yield Collaboration Yield Trial
Matthew Paul Reynolds Thomas Payne (2020, [Dataset])
The WYCYT international nurseries are the result of research conducted to raise the yield potential of spring wheat through the strategic crossing of physiological traits related to source and sink potential in wheat. These trials have been phenotyped in the major wheat-growing mega environments through the International Wheat Improvement Network (IWIN) and the Cereal System Initiative for South Asia (CSISA) network, which included a total of 136 environments (site-year combinations) in major spring wheat-growing countries such as Bangladesh, China, Egypt, India, Iran, Mexico, Nepal, and Pakistan.
1st Wheat Yield Collaboration Yield Trial
Matthew Paul Reynolds Thomas Payne (2020, [Dataset])
The WYCYT international nurseries are the result of research conducted to raise the yield potential of spring wheat through the strategic crossing of physiological traits related to source and sink potential in wheat. These trials have been phenotyped in the major wheat-growing mega environments through the International Wheat Improvement Network (IWIN) and the Cereal System Initiative for South Asia (CSISA) network, which included a total of 136 environments (site-year combinations) in major spring wheat-growing countries such as Bangladesh, China, Egypt, India, Iran, Mexico, Nepal, and Pakistan.
12th High Temperature Wheat Yield Trial
Ravi Singh Thomas Payne (2019, [Dataset])
CIMMYT annually distributes improved germplasm developed by its researchers and partners in international nurseries trials and experiments. The High Temperature Wheat Yield Trial (HTWYT) is a replicated yield trial that contains spring bread wheat (Triticum aestivum) germplasm adapted to Mega-environment 1 (ME1) which represents high temperature areas.
14th High Rainfall Wheat Yield Trial
Ravi Singh Thomas Payne (2019, [Dataset])
CIMMYT annually distributes improved germplasm developed by its researchers and partners in international nurseries trials and experiments. The High Rainfall Wheat Yield Trial (HRWYT) contains very top-yielding advance lines of spring bread wheat (Triticum aestivum) germplasm adapted to high rainfall, Wheat Mega-environment 2 (ME2HR).
38th International Durum Screening Nursery
Thomas Payne (2020, [Dataset])
International Durum Screening Nursery (IDSN) distributes diverse CIMMYT-bred spring durum wheat germplasm adapted to irrigated and variable moisture stressed environments. Disease resistance and high industrial pasta quality are essential traits possessed in this germplasm. It is distributed to 100 locations, and contains 150 entries.
Genetic and phenotypic data of Syn/Weebil recombinant inbred lines under drought and heat stresses
Caiyun Liu Sivakumar Sukumaran Carolina Sansaloni Susanne Dreisigacker Matthew Paul Reynolds (2019, [Dataset])
We studied a RIL population of 276 entries derived from a cross between SYN-D × Weebill 1. SYN-D (Croc 1/Aegilops Squarrosa (224)//Opata) is a synthetic derived hexaploid wheat with dark green broad leaves without wax. The RILs did not segregate for Rht-B1, Rht-D1, Ppd-A1, Ppd-D1, Vrn-A1, Vrn-A1, Vrn-D1, and Eps-D1 genes and showed a narrow range of phenology, which avoids the confounding effect of phenology to identify QTL that may otherwise be masked by crop development. The RILs population was phenotyped in a randomized lattice design with two replications under four environments -drought (2009-2010, D10), heat (2009-2010, H10), heat + drought (2011-2012 and 2012-2013, HD12 and HD13)- at the Campo Experimental Norman E. Borlaug (CENEB), CIMMYT’s experimental station at Ciudad Obregón, Sonora, Northwest Mexico (27.20°N, 109.54°W, 38 masl). Drought stress (D) was applied by normal planting (late November) with significantly reduced irrigation (total water supply < 200 mm); heat stress (H) was applied by late sowing (late February) with supplementary irrigation (total water supply > 700 mm) to avoid the effect of drought; the combined stress (H+D) was applied by delayed planting date (late February) with reduced irrigation (total water supply < 200 mm).
Osval Antonio Montesinos-Lopez Jose Crossa Jaime Cuevas Morten Lillemo Philomin Juliana Ravi Singh (2018, [Dataset])
A new statistical model is presented for genomic prediction on maize and wheat data comprising multi-trait, multi-environment data.
CIMMYT Maize Line genotypic profiles generated through genotyping-by-sequencing
XUECAI ZHANG (2016, [Dataset])
CIMMYT Maize Lines (CMLs) are the elite inbred lines released by CIMMYT to collaborators around the world and to the general puiblic each year. Genetic fingerprints of 538 CML lines were generated by genotyping-by-sequencing at the Genomic Diversity Facility at Cornell University along with the fingerprints of 6 elite temperate lines (Mo17, Oh43, B37, B73, B84, and C103).
14th Semi-Arid Wheat Yield Trial Marker-Assisted Selection Data
Susanne Dreisigacker (2015, [Dataset])
^^