Filter by:
Publication type
- Article (34)
- Conference object (10)
- Book (4)
- Book part (2)
- Master thesis (1)
Authors
- ML JAT (6)
- Suresh L.M. (5)
- Nele Verhulst (4)
- Ravi Gopal Singh (4)
- Christian Thierfelder (3)
Issue Years
Publishers
- Centro de Investigaciones Biológicas del Noroeste, S. C. (1)
- El autor (1)
- Professional Assoc. Cactus Development (1)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. (1)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. División de Ciencias Sociales y Humanidades. (1)
Origin repository
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (44)
- Repositorio Institucional CIBNOR (3)
- Repositorio Institucional Zaloamati (3)
- Repositorio Institucional CICY (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Access Level
- oa:openAccess (51)
- oa:embargoedAccess (1)
Language
Subject
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (45)
- MAIZE (13)
- CONSERVATION AGRICULTURE (11)
- WHEAT (7)
- CLIMATE CHANGE (6)
Select the topics of your interest and receive the hottest publications in your email
Nepal Seed And Fertilizer Project
Dyutiman Choudhary (2022)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED FERTILIZERS SEED INDUSTRY PRIVATE SECTOR MAIZE RICE INTEGRATED SOIL FERTILITY MANAGEMENT COVID-19
Nepal Seed And Fertilizer Project
Dyutiman Choudhary (2021)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SEED INDUSTRY PRIVATE SECTOR MAIZE RICE INTEGRATED SOIL FERTILITY MANAGEMENT COVID-19
Gatien Falconnier Marc Corbeels Frédéric Baudron Antoine Couëdel leonard rusinamhodzi bernard vanlauwe Ken Giller (2023)
Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the “yes” answer have put forward the “input reduction” principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is “agroecological” by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility—recycling, efficiency, diversity—remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support.
Article
Manure Crop Yields Smallholder Farming Systems Environmental Hazards CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOLOGICAL NITROGEN FIXATION LEGUMES NUTRIENT BALANCE SOIL FERTILITY AGROECOLOGY YIELD INCREASES LITERATURE REVIEWS
Weed management and tillage effect on rainfed maize production in three agro-ecologies in Mexico
Simon Fonteyne Abel Jaime Leal González Rausel Ovando Ravi Gopal Singh Nele Verhulst (2022)
Maize (Zea mays L.) is grown in a wide range of agro-ecological environments and production systems across Mexico. Weeds are a major constraint on maize grain yield, but knowledge regarding the best weed management methods is lacking. In many production systems, reducing tillage could lessen land degradation and production costs, but changes in tillage might require changes in weed management. This study evaluated weed dynamics and rainfed maize yield under five weed management treatments (pre-emergence herbicide, post-emergence herbicide, pre-emergence + post-emergence herbicide, manual weed control, and no control) and three tillage methods (conventional, minimum and zero tillage) in three agro-ecologically distinct regions of the state of Oaxaca, Mexico, in 2016 and 2017. In the temperate Mixteca region, weeds reduced maize grain yields by as much as 92% and the long-growing season required post-emergence weed control, which gave significantly higher yields. In the hot, humid Papaloapan region, weeds reduced maize yields up to 63% and pre-emergence weed control resulted in significantly higher yields than treatments with post-emergence control only. In the semi-arid Valles Centrales region, weeds reduced maize yields by as much as 65%, but weed management was not always effective in increasing maize yield or net profitability. The most effective weed management treatments tended to be similar for the three tillage systems at each site, although weed pressure and the potential yield reduction by weeds tended to be higher under zero tillage than minimum or conventional tillage. No single best option for weed management was found across sites or tillage systems. More research, in which non-chemical methods should not be overlooked, is thus needed to determine the most effective weed management methods for the diverse maize production systems across Mexico.
Article
Corn Integrated Weed Management Manual Weed Control CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE WEED CONTROL MINIMUM TILLAGE ZERO TILLAGE
Hacia un manejo sustentable de la quinua en el altiplano sur de Bolivia
Santiago Lopez-Ridaura Ravi Gopal Singh (2022)
Book
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA QUINUA FERTILIDAD DEL SUELO GANADERÍA AGRICULTURA DE CONSERVACIÓN SUELO SIEMBRA PLAGAS QUINOA SOIL FERTILITY ANIMAL HUSBANDRY CONSERVATION AGRICULTURE SOIL SOWING PESTS
Climate robust soil fertility management by smallholders in Africa, Asia, and Latin America
Tek Sapkota (2023)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL FERTILITY SMALLHOLDERS FERTILIZERS NUTRIENT MANAGEMENT
Soil analysis and integrated nutrient management
Isaiah Nyagumbo (2021)
Conference object
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL ANALYSIS NUTRIENT MANAGEMENT SOIL FERTILITY
Manejo de pasturas para la crianza de llamas
Santiago Lopez-Ridaura Ravi Gopal Singh (2022)
Book
Pasturas CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURA DE CONSERVACIÓN GANADERÍA ARBUSTOS LEGUMINOSAS FORRAJES PASTOREO SUELO CAMBIO CLIMÁTICO CONSERVATION AGRICULTURE ANIMAL HUSBANDRY SHRUBS LEGUMES FORAGE GRAZING SOIL CLIMATE CHANGE LLAMAS AGACHO
Yendi Navarro-Noya Marco Luna_Guido Nele Verhulst Bram Govaerts Luc Dendooven (2022)
Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha-1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha-1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2- was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.
Article
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AMMONIUM CROP RESIDUES WHEAT MAIZE TILLAGE SOIL
Arbustos y pastos para restablecer la cobertura vegetal en zonas áridas del Sur de Bolivia
Santiago Lopez-Ridaura Ravi Gopal Singh (2022)
Book
Pastos CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURA DE CONSERVACIÓN SUELO COBERTURA DE SUELOS FERTILIDAD DEL SUELO CAMBIO CLIMÁTICO GANADERÍA VEGETACIÓN ARBUSTOS CONSERVATION AGRICULTURE SOIL LAND COVER CLIMATE CHANGE ANIMAL HUSBANDRY VEGETATION SHRUBS