Filtros
Filtrar por:
Tipo de publicación
- Artículo (58)
- Objeto de congreso (27)
- Libro (7)
- Tesis de maestría (6)
- Documento de trabajo (5)
Autores
- Jelle Van Loon (9)
- Tek Sapkota (6)
- Jason Donovan (5)
- Alison Bentley (4)
- ML JAT (4)
Años de Publicación
Editores
- CICESE (3)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Universidad Autónoma de Ciudad Juárez (2)
- Antoni Margalida, University of Lleida, Spain (1)
- Craig R. McClain, Monterey Bay Aquarium Research Institute, United States of America (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (89)
- Repositorio Institucional CICESE (8)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (3)
- Repositorio Institucional CIBNOR (2)
- Repositorio Institucional Zaloamati (2)
Tipos de Acceso
- oa:openAccess (107)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (90)
- CLIMATE CHANGE (18)
- FOOD SECURITY (18)
- WHEAT (15)
- MAIZE (14)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Balwinder-Singh Meha Jain (2023, [Artículo])
One way to meet growing food demand is to increase yields in regions that have large yield gaps, including smallholder systems. To do this, it is important to quantify yield gaps, their persistence, and their drivers at large spatio-temporal scales. Here we use microsatellite data to map field-level yields from 2014 to 2018 in Bihar, India and use these data to assess the magnitude, persistence, and drivers of yield gaps at the landscape scale. We find that overall yield gaps are large (33% of mean yields), but only 17% of yields are persistent across time. We find that sowing date, plot area, and weather are the factors that most explain variation in yield gaps across our study region, with earlier sowing associated with significantly higher yield values. Simulations suggest that if all farmers were able to adopt ideal management strategies, including earlier sowing and more irrigation use, yield gaps could be closed by up to 42%. These results highlight the ability of micro-satellite data to understand yield gaps and their drivers, and can be used to help identify ways to increase production in smallholder systems across the globe.
Yield Drivers Yield Mapping CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MICROSATELLITES YIELD GAP SMALLHOLDERS FOOD PRODUCTION YIELD INCREASES
Tek Sapkota Sieglinde Snapp (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CEREAL PRODUCTS PRODUCTION SYSTEMS CEREALS NITROGEN RICE WHEAT MAIZE
Angela Meentzen (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENDER EQUALITY FOOD SYSTEMS CLIMATE CHANGE WOMEN'S PARTICIPATION
Testing innovations for adoption of newer and more adapted maize varieties
Michael Ndegwa Pieter Rutsaert Jason Donovan Jordan Chamberlin (2023, [Objeto de congreso])
Changing Production Conditions Genetic Innovations Maize Hybrids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TESTING MAIZE VARIETIES YIELDS FARMERS EXPERIMENTATION
Remote sensing of quality traits in cereal and arable production systems: A review
Zhenhai Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])
Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.
Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS
Evan Girvetz Christian Thierfelder Iddo Dror (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE FOOD SYSTEMS DIVERSIFICATION RESILIENCE
Challenging the climate change effects on agriculture: need business unusual
ML JAT (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE FOOD SYSTEMS CONSERVATION AGRICULTURE SUSTAINABILITY INNOVATION
Nick Fradgley Alison Bentley Keith Gardner Stéphanie M. Swarbreck (2023, [Artículo])
Sustainable Food Systems Genomic Prediction Genome-Wide Association Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT BREEDING MARKER-ASSISTED SELECTION VARIETIES FOOD SYSTEMS QUALITY
Carlo Montes Anton Urfels Eunjin Han Balwinder-Singh (2023, [Artículo])
Rainy Season TIMESAT APSIM Agricultural Production Systems Simulator Climate Adaptation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RICE WHEAT MONSOONS WET SEASON CROP MODELLING CLIMATE CHANGE ADAPTATION
Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS