Filtros
Filtrar por:
Tipo de publicación
- Artículo (77)
- Objeto de congreso (31)
- Libro (1)
- Capítulo de libro (1)
Autores
- Suresh L.M. (16)
- Yoseph Beyene (14)
- Manje Gowda (10)
- Prasanna Boddupalli (10)
- Adefris Teklewold (6)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (109)
- Repositorio Institucional CICESE (1)
Tipos de Acceso
- oa:openAccess (110)
Idiomas
- eng (110)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (109)
- MAIZE (103)
- HYBRIDS (23)
- BREEDING (9)
- GERMPLASM (8)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Menas Wuta Isaiah Nyagumbo (2021, [Artículo])
Maize Yield Optimum Interval Dead Level Contours CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TECHNOLOGY DRY SPELLS MAIZE YIELDS RAINWATER HARVESTING
Testing innovations for adoption of newer and more adapted maize varieties
Michael Ndegwa Pieter Rutsaert Jason Donovan Jordan Chamberlin (2023, [Objeto de congreso])
Changing Production Conditions Genetic Innovations Maize Hybrids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TESTING MAIZE VARIETIES YIELDS FARMERS EXPERIMENTATION
Performance evaluation and identification of highland quality protein maize hybrids in Ethiopia
Adefris Teklewold (2022, [Artículo])
Quality Protein Conventional Maize CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE PROTEIN QUALITY CROSS-BREEDING HYBRIDS
Lewis Machida Dan Makumbi (2023, [Artículo])
Maize Variety Testing Multienvironment Trial Analysis Relative Maturity REMATTOOL-R Superior Varieties Identification CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE VARIETIES MATURITY IDENTIFICATION YIELDS
Sarah Hearne zhiyuan fu (2023, [Artículo])
Maize Endosperm Development Membrane Proteomics Glycosyl-Phosphatidyl-Inositol Membrane Anchored Proteins CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE ENDOSPERM MEMBRANES PROTEOMICS TRANSCRIPTOMICS
Kindie Tesfaye Dereje Ademe Enyew Adgo (2023, [Artículo])
This study determined the most effective plating density (PD) and nitrogen (N) fertilizer rate for well-adapted BH540 medium-maturing maize cultivars for current climate condition in north west Ethiopia midlands. The Decision Support System for Agrotechnology Transfer (DSSAT)-Crop Environment Resource Synthesis (CERES)-Maize model has been utilized to determine the appropriate PD and N-fertilizer rate. An experimental study of PD (55,555, 62500, and 76,900 plants ha−1) and N (138, 207, and 276 kg N ha−1) levels was conducted for 3 years at 4 distinct sites. The DSSAT-CERES-Maize model was calibrated using climate data from 1987 to 2018, physicochemical soil profiling data (wilting point, field capacity, saturation, saturated hydraulic conductivity, root growth factor, bulk density, soil texture, organic carbon, total nitrogen; and soil pH), and agronomic management data from the experiment. After calibration, the DSSAT-CERES-Maize model was able to simulate the phenology and growth parameters of maize in the evaluation data set. The results from analysis of variance revealed that the maximum observed and simulated grain yield, biomass, and leaf area index were recorded from 276 kg N ha−1 and 76,900 plants ha−1 for the BH540 maize variety under the current climate condition. The application of 76,900 plants ha−1 combined with 276 kg N ha−1 significantly increased observed and simulated yield by 25% and 15%, respectively, compared with recommendation. Finally, future research on different N and PD levels in various agroecological zones with different varieties of mature maize types could be conducted for the current and future climate periods.
Maize Model Planting Density CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE MODELS SPACING NITROGEN FERTILIZERS YIELDS
Frédéric Baudron Terence Sunderland (2022, [Artículo])
Insectivorous Birds Bat Predation Maize Cultivation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FALL ARMYWORMS BIOLOGICAL PEST CONTROL INSECTIVOROUS ANIMALS MAIZE PREDATOR PREY RELATIONS
On-farm storage loss estimates of maize in Kenya using community survey methods
Hugo De Groote Anani Bruce (2023, [Artículo])
Maize is the most important staple in sub-Saharan Africa (SSA), with highly seasonal production. High storage losses affect food security, but good estimations are lacking. A new method using focus group discussions (FGDs) was tested with 121 communities (1439 farmers, 52% women) in Kenya's six maize-growing zones, to estimate the maize losses to storage pests and analyze farmer practices. As control strategies, half of the farmers used chemical pesticides (49%), while hermetic bags (16%) and botanicals (15%) were also popular. Relative loss from weevils in the long rains was estimated at 23%, in the short rains 18%, and annually 21%. Fewer farmers were affected by the larger grain borer (LGB) than by maize weevils: 42% in the long rainy season and 32% in the short rainy season; losses from LGB were also smaller: 19% in the long season, 17% in the short season, and 18% over the year. Total storage loss, from both species combined, was estimated at 36%, or 671,000 tonnes per year. The greatest losses occur in the humid areas, especially the moist mid-altitudes (56%), and with smaller loss in the drylands (20–23%). Extrapolating the point data and overlaying with the maize production map shows the geographic distribution of the losses, with the most important area found around Lake Victoria. FGDs provide convenient and cheap tools to estimate storage losses in representative communities, but a total loss estimate of 36% is higher than is found in other studies, so its accuracy and framing effects need to be assessed. We conclude that storage pests remain a major problem, especially in western Kenya, and that the use of environmentally friendly technologies such as hermetic storage and botanicals needs more attention, both by the public extension service and private agrodealers.
Larger Grain Borer Maize Weevil CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE STORAGE LOSSES PESTS SURVEY METHODS
Mining alleles for tar spot complex resistance from CIMMYT's maize Germplasm Bank
Martha Willcox Juan Burgueño Daniel Jeffers Zakaria Kehel Rosemary Shrestha Kelly Swarts Edward Buckler Sarah Hearne Charles Chen (2022, [Artículo])
Maize Landraces Maize Genetic Resources Allelic Diversity Rare Alleles Phenotypic Characterization Tropical Maize Phyllachora maydis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE LANDRACES GENETIC RESOURCES ALLELES FOLIAR DISEASES CLIMATE CHANGE