Filtros
Filtrar por:
Tipo de publicación
- Tesis de maestría (313)
- Dataset (250)
- Artículo (154)
- Capítulo de libro (99)
- Tesis de doctorado (69)
Autores
- Fernando Nuno Dias Marques Simoes (250)
- EDER DE JESUS PEREA CASANOVA (34)
- ITZEL GABRIELA DELGADILLO MALDONADO (34)
- AKETZALI ARIADNA ARTEAGA CARPINTEYRO (33)
- ALBERTO DIAZ ALAVEZ (33)
Años de Publicación
Editores
- Cenoteando, Facultad de Ciencias, UNAM (cenoteando.mx) (249)
- Centro de Investigaciones y Estudios Superiores en Antropología Social (63)
- Universidad Nacional Autónoma de México, Instituto de Investigaciones sobre la Universidad y la Educación (60)
- El autor (43)
- Universidad Autónoma de Ciudad Juárez (39)
Repositorios Orígen
- Cenotes de Yucatan (250)
- COLECCIONES DIGITALES COLMEX (169)
- Repositorio institucional del IMTA (74)
- REPOSITORIO INSTITUCIONAL DEL CIESAS (61)
- Repositorio Institucional del Instituto de Investigaciones sobre la Universidad y la Educación (60)
Tipos de Acceso
- oa:openAccess (967)
Idiomas
Materias
- CIENCIAS SOCIALES (965)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (254)
- BIOLOGÍA Y QUÍMICA (253)
- CIENCIA POLÍTICA (67)
- SOCIOLOGÍA (67)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Difusión de cursos que la Fundación Carlos Slim ofrece en aprende.org
Cesar Petroli (2021, [Poster de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA TRAINING AGRICULTURAL TRAINING SOCIAL NETWORKS TRAINING COURSES SUSTAINABLE AGRICULTURE
Tania Carolina Camacho Villa Ernesto Adair Zepeda Villarreal Julio Díaz-José Roberto Rendon-Medel Bram Govaerts (2023, [Artículo])
Social Network Analysis Farm Typologies Social Ties Strong Ties CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION NETWORKS PERSISTENCE SOCIAL NETWORK ANALYSIS MAIZE FARMING SYSTEMS
Digital artifacts reveal development and diffusion of climate research
Bia Carneiro Tek Sapkota (2022, [Artículo])
Accessible Knowledge Impact of Outputs Traditional Bibliometric Analyses Hyperlink Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE DIFFUSION MAIZE MINING ORGANIZATION SOCIAL MEDIA SOCIAL NETWORK ANALYSIS WHEAT TEXT MINING
Leah Mungai Joseph Messina Leo Zulu Jiaguo Qi Sieglinde Snapp (2022, [Artículo])
Multilayer Perceptrons CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE LAND USE POPULATION SATELLITE IMAGERY TEXTURE LAND COVER NEURAL NETWORKS REMOTE SENSING
E. African spring wheat breeding pipeline and Network (CIMMYT-KALRO)
sridhar bhavani (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT PLANT BREEDING RESEARCH NETWORKS
Chapter 9. Genome-informed discovery of genes and framework of functional genes in wheat
awais rasheed Rudi Appels (2024, [Capítulo de libro])
Wheat Genomics KASP Markers Gene Discovery Functional Markers Gene Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT GENOMICS SINGLE NUCLEOTIDE POLYMORPHISMS FUNCTIONAL GENOMICS
Multi-environment genomic prediction of plant traits using deep learners with dense architecture
Osval Antonio Montesinos-Lopez Jose Crossa (2018, [Artículo])
Shared Data Resources Deep Learning Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ACCURACY GENOMICS NEURAL NETWORKS FORECASTING DATA MARKER-ASSISTED SELECTION
Sorghum value chain analysis in semi-arid Zimbabwe
Abbyssinia Mushunje Munyaradzi Junia Mutenje Charles Pfukwa (2019, [Artículo])
Small Scale Farmers Extension Networks CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRO-INDUSTRIAL SECTOR MARKETING MARGINS SORGHUM VALUE CHAINS
A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
Ali Mirzazadeh Afshin Azizi Yousef Abbaspour_Gilandeh José Luis Hernández-Hernández Mario Hernández Hernández Iván Gallardo Bernal (2021, [Artículo])
Estimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
rapeseed classification damaged crops deep neural networks INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Sajad Sabzi Razieh Pourdarbani Mohammad Hossein Rohban Alejandro Fuentes_Penna José Luis Hernández-Hernández Mario Hernández Hernández (2021, [Artículo])
Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network¿imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network¿harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the Knearest- neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network¿biogeography-based optimization (ANNBBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.
artificial neural network cucumber hyperspectral imaging majority voting nitrogen INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS