Filtrar por:
Tipo de publicación
- Artículo (26)
- Libro (4)
- Objeto de congreso (4)
- Tesis de maestría (1)
- Otro (1)
Autores
- Nele Verhulst (4)
- Bram Govaerts (3)
- Luc Dendooven (3)
- Ravi Gopal Singh (3)
- Santiago Lopez-Ridaura (3)
Años de Publicación
Editores
- Amitava Mukherjee, VIT University, India (1)
- Centro de Investigaciones Biológicas del Noroeste, S. C. (1)
- Dongsheng Zhou, Beijing Institute of Microbiology and Epidemiology, China (1)
- El autor (1)
- Gabriel Moreno-Hagelsieb, Wilfrid Laurier University, Canada (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (28)
- Repositorio Institucional CIBNOR (3)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional CICY (1)
- Repositorio Institucional de Acceso Abierto de la Universidad Autónoma del Estado de Morelos (1)
Tipos de Acceso
- oa:openAccess (35)
- oa:embargoedAccess (1)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (29)
- MAIZE (9)
- CONSERVATION AGRICULTURE (8)
- BIOLOGÍA Y QUÍMICA (7)
- CIENCIAS DE LA VIDA (7)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
RICARDO VAZQUEZ JUAREZ TANIA ZENTENO SAVIN ENRIQUE MORALES BOJORQUEZ Elvia Pérez Rosales Lilia Alcaráz Meléndez María Esther Puente Eduardo Quiroz Guzmán (2017, [Artículo])
"In this communication, the diversity and beneficial characteristics of endophytic bacteria have been studied in Simmondsia chinensis that has industrial importance because of the quality of its seed oil. Endophytes were isolated (N = 101) from roots of the jojoba plants collected, of which eight were identified by partial sequencing of the 16S rDNA gene. The isolated bacteria were Bacillus sp., Methylobacterium aminovorans, Oceanobacillus kimchi, Rhodococcus pyridinivorans and Streptomyces sp. All isolates had at least one positive feature, characterizing them as potential plant growth promoting bacteria. In this study, R. pyridinivorans and O. kimchi are reported as plant growth promoters."
Endophytic bacteria, plant growth promoters, Simmondsia chinensis, seed oil BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA BACTERIOLOGÍA BACTERIOLOGÍA
Whole-genome comparison between reference sequences and oyster Vibrio vulnificus C-genotype strains
CARLOS ABRAHAM GUERRERO RUIZ (2019, [Artículo])
Whole-genome sequences of Vibrio vulnificus clinical genotype (C-genotype) from the CICESE Culture Collection, isolated from oysters, were compared with reference sequences of CMCP6 and YJ016 V. vulnificus C-genotype strains of clinical origin. The RAST web server estimated the whole genome to be ~4.8 Mb in CICESE strain 316 and ~4.7 Mb in CICESE strain 325. No plasmids were detected in the CICESE strains. Based on a phylogenetic tree that was constructed with the whole-genome results, we observed high similarity between the reference sequences and oyster C-genotype isolates and a sharp contrast with environmental genotype (E-genotype) reference sequences, indicating that the differences between the C- and E-genotypes do not necessarily correspond to their isolation origin. The CICESE strains share 3488 genes (63.2%) with the YJ016 strain and 3500 genes (63.9%) with the CMCP6 strain. A total of 237 pathogenicity associated genes were selected from reference clinical strains, where—92 genes were from CMCP6, 126 genes from YJ016, and 19 from MO6-24/ O; the presence or absence of these genes was recorded for the CICESE strains. Of the 92 genes that were selected for CMCP6, 67 were present in both CICESE strains, as were as 86 of the 126 YJ016 genes and 13 of the 19 MO6-24/O genes. The detection of elements that are related to virulence in CICESE strains—such as the RTX gene cluster, vvhA and vvpE, the type IV pili cluster, the XII genomic island, and the viuB genes, suggests that environmental isolates with the C-genotype, have significant potential for infection. © 2019 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, bacterial gene, bacterial strain, bacterial virulence, comparative study, controlled study, gene cluster, gene identification, genomic island, genotype, nonhuman, phylogenetic tree, sequence analysis, strain identification, Vibrio vulnificus BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA
Geovanna Zárate Camargo (2024, [Tesis de maestría])
"Las temperaturas extremas, radiación solar intensa, vientos fuertes, humedad limitada y la baja fertilidad de los suelos desérticos dificultan la recuperación de zonas degradadas en zonas áridas. Uno de los fenómenos naturales más importantes de revegetación en zonas áridas son las islas de recursos, conformadas por algunos tipos de plantas que actúan como nodrizas, las cuales, bajo su dosel, desarrollan un microhábitat favorable para el establecimiento de otras especies que trabajan en conjunto con una larga comunidad de microorganismos que se encuentran en el suelo. Entre las plantas nodriza que se observan con más frecuencia en el Desierto de Sonora, se encuentran las especies del género Prosopis. Las islas de recursos conformadas por mezquites han demostrado tener un efecto positivo como planta nodriza en zonas áridas. Las contribuciones del mezquite son el aumento del contenido de N en el suelo, temperaturas moderadas en el suelo y la superficie, altos niveles de humedad, mayor actividad microbiana, entre otros aspectos que hacen posible los efectos de las islas de recursos. En este estudio se evaluaron diferentes indicadores de calidad de suelo en islas de recursos establecidas hace 19 años, como parte de un proyecto de revegetación de suelos degradados, distintivo del Desierto Sonorense. El objetivo de este estudio fue determinar si existe un gradiente con respecto a la distancia y profundidad, en la actividad microbiana y enzimática presente en suelos de islas de recursos, resultado de la interacción de mezquite amargo (Prosopis articulata), como planta nodriza y cardón (Pachycereus pringlei), como planta objetivo. Los resultados demostraron que existe un aumento la actividad enzimática y carbono asociado a biomasa microbiana del suelo perteneciente a estas islas, con mayores resultados en zonas próximas a la planta nodriza que en zonas sin su influencia, también se encontró un aumento en la capa superficial del suelo mostrando mayores valores en los indicadores de calidad y funcionalidad bajo el dosel de las islas de recursos. Lo anterior sugiere que el uso de estas islas de recursos es una potencial alternativa en la restauración de suelos degradados, favoreciendo el ciclaje de nutrientes en suelos degradados."
"At desert, the high temperatures, intense solar radiation, strong winds, limited water, and low fertility, determine how challenging will be the recovery of degraded soils in arid lands. One of the most important natural phenomena of revegetation in arid lands are the “resource islands”, that consist of some trees or bushes acting as nurse plants, which under their canopy, develop a beneficial microhabitat for the establishment of other plant species the work with an extensive community of microorganisms found in the soil. Among the most common nurse plants observed in the Sonoran Desert, is the genus Prosopis. The resource islands formed with mesquite have shown positive effects as nurse plant in arid lands. The principal contributions of mesquite are the increase of N in the soil, moderate temperatures on soil and topsoil, high moisture levels, increased microbial activity, among other aspects that make possible the effect of resource islands. In this study, different quality indicators were evaluated in resource islands established 19 years ago, as part of a project for revegetation in degraded soils, distinctive from the Sonoran Desert. The aim of this research was to explore whether there is a correlation between distance, depth, microbial activity, and enzymatic activity in the soil surrounding resource islands formed by the interaction between mesquite amargo (Prosopis articulata) as the nurse plant and cardon (Pachycereus pringlei) as the objective plant. The results demonstrated that there is an increase in the enzymatic activity and microbial biomass carbon from the soil under the canopy of the resource islands, with higher results in zones near the nurse plant than zones without its influence, furthermore, there was found an increase in the topsoil showing higher values in the soil quality and functionality indicators under the canopy of the resource islands. The above indicates that the use of these resource islands is a potential alternative in the degraded soil restoration, supporting the nutrient cycling in degraded soils."
suelo, ecología, revegetación, actividad enzimática, ciclaje de nutrientes soil, ecology, revegetation, enzymatic activity, nutrient cycling CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS AGRONOMÍA FERTILIDAD DEL SUELO FERTILIDAD DEL SUELO
EMILIO RAYMUNDO MORALES MALDONADO MONICA GUTIERREZ ROJAS RAMON JAIME HOLGUIN PEÑA Daniel Ruiz-Juárez Jorge Luis Vega Chávez Ana Cristina Reyes Godoy (2022, [Artículo])
"Mexico has 159 species of Agave spp. In the agri-food industry stand out are Agave tequilana, A. angustifolia, and A. salmiana. A limitation to producing maguey seedlings is the low availability of organic substrates that favor plant adaptation in the field. The objective was to evaluate the effect of nitrogen (N), phosphorus (P) and potassium (K) found in substrates in response to vegetative and root growth of A. salmiana in agricultural areas of Huichapan, Hidalgo, Mexico. The treatment consisted of earthworm humus (EH) and leaf compost (LC) substrates with materials from the region with different percentages of EH (100, 75, 50%), LC (5, 10%), and sand (20, 40%). The treatments were applied with 14 random replications in two phases in seeds and 40-day-seedlings. The variables evaluated were NPK amount and pH in substrates. The physiological variables measured were plant height, leaf number, stem diameter, root length, and volume. Significant differences (P≤0.05) were observed in seedling physiology due to the effect of the treatment. The best agronomic responses (plant growth and root length/weight) of Agave seedlings were T5 (75% earthworm humus + 20% sand + 5% leaf-soil) and T6 (50% earthworm humus + 40% sand + 10% leaf-soil); in both treatments, the NPK percentages were different from the control (Haplic Phaeozem soil) group. The final concentration of NPK in T6 was N = 0.04%, P = 398.13 mg Kg-1 and K = 11.88 meq 100g-1 . The results infer that NPK availability in soil and progressive acidification (initial pH = 8.6, final pH = 7.4) of the substrate can favorably influence the plant response. The interactions between NPK availability in the substrate and their use for a better response in maguey seedling adaptability open up new lines of research on the productive systems in the región of Huichapan, Hidalgo, Mexico."
maguey, nutritional quality, plant physiology, productive soils, seedling BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) FERTILIDAD DEL SUELO FERTILIDAD DEL SUELO
CARLOS ABRAHAM GUERRERO RUIZ (2017, [Artículo])
Vibrio parahaemolyticus is an important human pathogen that has been isolated worldwide from clinical cases, most of which have been associated with seafood consumption. Environmental and clinical toxigenic strains of V. parahaemolyticus that were isolated in Mexico from 1998 to 2012, including those from the only outbreak that has been reported in this country, were characterized genetically to assess the presence of the O3:K6 pandemic clone, and their genetic relationship to strains that are related to the pandemic clonal complex (CC3). Pathogenic tdh+ and tdh+/trh+ strains were analyzed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Also, the entire genome of a Mexican O3:K6 strain was sequenced. Most of the strains were tdh/ORF8-positive and corresponded to the O3:K6 serotype. By PFGE and MLST, there was very close genetic relationship between ORF8/O3:K6 strains, and very high genetic diversities from non-pandemic strains. The genetic relationship is very close among O3:K6 strains that were isolated in Mexico and sequences that were available for strains in the CC3, based on the PubMLST database. The whole-genome sequence of CICESE-170 strain had high similarity with that of the reference RIMD 2210633 strain, and harbored 7 pathogenicity islands, including the 4 that denote O3:K6 pandemic strains. These results indicate that pandemic strains that have been isolated in Mexico show very close genetic relationship among them and with those isolated worldwide. © 2017 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, bacterial strain, biofouling, controlled study, Crassostrea, food intake, gene sequence, genetic analysis, genetic variability, Japan, Mexican, Mexico, molecular phylogeny, nonhuman, pandemic, pathogenicity island, sea food, serotyping, toxi BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA
ANAID MEZA VILLEZCAS (2019, [Artículo])
Vibrio cholerae is an important human pathogen causing intestinal disease with a high incidence in developing countries. V. cholerae can switch between planktonic and biofilm lifestyles. Biofilm formation is determinant for transmission, virulence and antibiotic resistance. Due to the enhanced antibiotic resistance observed by bacterial pathogens, antimicrobial nanomaterials have been used to combat infections by stopping bacterial growth and preventing biofilm formation. In this study, the effect of the nanocomposites zeolite-embedded silver (Ag), copper (Cu), or zinc (Zn) nanoparticles (NPs) was evaluated in V. cholerae planktonic cells, and in two biofilm states: pellicle biofilm (PB), formed between air-liquid interphase, and surface-attached biofilm (SB), formed at solid-liquid interfaces. Each nanocomposite type had a distinctive antimicrobial effect altering each V. cholerae lifestyles differently. The ZEO-AgNPs nanocomposite inhibited PB formation at 4 μg/ml, and prevented SB formation and eliminated planktonic cells at 8 μg/ml. In contrast, the nanocomposites ZEO-CuNPs and ZEO-ZnNPs affect V. cholerae viability but did not completely avoid bacterial growth. At transcriptional level, depending on the nanoparticles and biofilm type, nanocomposites modified the relative expression of the vpsL, rbmA and bap1, genes involved in biofilm formation. Furthermore, the relative abundance of the outer membrane proteins OmpT, OmpU, OmpA and OmpW also differs among treatments in PB and SB. This work provides a basis for further study of the nanomaterials effect at structural, genetic and proteomic levels to understand the response mechanisms of V. cholerae against metallic nanoparticles. © 2019 Meza-Villezcas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
bacterial protein, copper nanoparticle, nanocomposite, OmpT protein, OmpU protein, OmpW protein, outer membrane protein A, silver nanoparticle, unclassified drug, zeolite, zinc nanoparticle, antiinfective agent, copper, metal nanoparticle, nanocompos BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA