Filtrar por:
Tipo de publicación
- Artículo (76)
- Objeto de congreso (23)
- Capítulo de libro (3)
- Tesis de doctorado (1)
Autores
- Jose Crossa (12)
- Alison Bentley (6)
- Berhanu Tadesse Ertiro (6)
- Osval Antonio Montesinos-Lopez (6)
- Francisco Pinto (5)
Años de Publicación
Editores
- Antoni Margalida, University of Lleida, Spain (1)
- Bernd Schierwater, University of Veterinary Medicine Hanover, Germany (1)
- CICESE (1)
- Centro de Investigaciones Biológicas del Noroeste, s.c. (1)
- Plant Genome (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (98)
- Repositorio Institucional CICESE (3)
- Repositorio Institucional CIBNOR (1)
- Repositorio institucional de la Universidad de Colima (1)
Tipos de Acceso
- oa:openAccess (103)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (99)
- BREEDING (31)
- MAIZE (26)
- WHEAT (25)
- MARKER-ASSISTED SELECTION (22)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Adefris Teklewold (2022, [Artículo])
Grain Yield Quality Protein Maize CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROSS-BREEDING INBRED LINES HETEROSIS PROTEIN QUALITY HYBRIDS
AGG-maize year 3 major achievements and next steps
Yoseph Beyene (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE BREEDING PROGRAMMES INNOVATION HYBRIDS GERMPLASM
Yogesh Vikal Manje Gowda (2023, [Artículo])
Brown Mid-Rib Genomic Selection CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOMASS SILAGE DIGESTIBILITY GENOME-WIDE ASSOCIATION STUDIES MARKER-ASSISTED SELECTION MAIZE
Results from rapid-cycle recurrent genomic selection in spring bread wheat
Susanne Dreisigacker Paulino Pérez-Rodríguez Leonardo Abdiel Crespo Herrera Alison Bentley Jose Crossa (2023, [Artículo])
Genomic-Assisted Breeding Molecular Markers Pedigree Information Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOMICS GENETIC MARKERS WHEAT BREEDING PROGRAMMES
Osval Antonio Montesinos-Lopez ABELARDO MONTESINOS LOPEZ RICARDO ACOSTA DIAZ Rajeev Varshney Jose Crossa ALISON BENTLEY (2022, [Artículo])
Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed. A common approach is to guarantee a proportion of nonoverlapping and overlapping lines allocated randomly in locations, that is, lines appearing in some locations but not in all. In this study we propose using incomplete block designs (IBD), principally, for the allocation of lines to locations in such a way that not all lines are observed in all locations. We compare this allocation with a random allocation of lines to locations guaranteeing that the lines are allocated to
the same number of locations as under the IBD design. We implemented this benchmarking on several crop data sets under the Bayesian genomic best linear unbiased predictor (GBLUP) model, finding that allocation under the principle of IBD outperformed random allocation by between 1.4% and 26.5% across locations, traits, and data sets in terms of mean square error. Although a wide range of performance improvements were observed, our results provide evidence that using IBD for the allocation of lines to locations can help improve predictive performance compared with random allocation. This has the potential to be applied to large-scale plant breeding programs.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA Bayes Theorem Genome Inflammatory Bowel Diseases Models, Genetic Plant Breeding
Associations between endogenous spike cytokinins and grain-number traits in spring wheat genotypes
Gemma Molero Carolina Rivera-Amado Matthew Paul Reynolds John Foulkes (2024, [Artículo])
Spike Cytokinins Grain Number Fruiting Efficiency Wheat Breeding CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SPIKES CYTOKININS GRAIN FRUITING HARVEST INDEX WHEAT PLANT BREEDING
Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits
Osval Antonio Montesinos-Lopez Jose Crossa Francisco Javier Martin Vallejo (2018, [Artículo])
Deep Learning Genomic Prediction Bayesian Modeling Shared Data Resources CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BAYESIAN THEORY RESOURCES DATA BREEDING PROGRAMMES
Zine El Abidine Fellahi Abderrahmane Hannachi Susanne Dreisigacker deepmala sehgal Hamenna Bouzerzour (2023, [Artículo])
Pleiotropic Effects Reduced Height Genes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA PLANT HEIGHT TRITICUM AESTIVUM YIELD COMPONENTS ALLELES BREEDING LINES
Product profile development and prioritization: Important considerations
Yoseph Beyene (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE PRODUCTS BREEDING PROGRAMMES MARKET SEGMENTATION TECHNOLOGY GERMPLASM
Vanika Garg Rutwik Barmukh Manish Roorkiwal Chris Ojiewo Abhishek Bohra MAHENDAR THUDI Vikas Kumar Singh Himabindu Kudapa Reyaz Mir Chellapilla Bharadwaj Xin Liu Manish Pandey (2024, [Artículo])
Agricultural Biotechnology Crop Genomics Genome Sequencing CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOTECHNOLOGY CROPS GENOMICS PLANT BREEDING AGRICULTURE GENETIC IMPROVEMENT