Búsqueda avanzada


Área de conocimiento




46 resultados, página 4 de 5

Remote sensing of quality traits in cereal and arable production systems: A review

Zhenhai  Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])

Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.

Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS

Transpiration of a tropical dry deciduous forest in Yucatan, Mexico

EVELYN RAQUEL SALAS ACOSTA José Luis Andrade Torres Jorge Perera ROBERTH ARMANDO US SANTAMARIA bernardo figueroa-espinoza Jorge M. Uuh-Sonda EDUARDO CEJUDO ESPINOSA (2022, [Artículo])

The study of forest hydrology and its relationships with climate requires accurate estimates of water inputs, outputs, and changes in reservoirs. Evapotranspiration is frequently the least studied component when addressing the water cycle; thus, it is important to obtain direct measurements of evaporation and transpiration. This study measured transpiration in a tropical dry deciduous forest in Yucatán (Mexico) using the thermal dissipation method (Granier-type sensors) in representative species of this vegetation type. We estimated stand transpiration and its relationship with allometry, diameter-at-breast-height categories, and previously published equations. We found that transpiration changes over time, being higher in the rainy season. Estimated daily transpiration ranged from 0.562 to 0.690 kg m–2 d–1 in the late dry season (April–May) and from 0.686 to 1.29 kg m–2 d–1 in the late rainy season (September–October), accounting for up to 51% of total evapotranspiration in the rainy season. These daily estimates are consistent with previous reports for tropical dry forests and other vegetation types. We found that transpiration was not species-specific; diameter at breast height (DBH) was a reliable way of estimating transpiration because water use was directly related to allometry. Direct measurement of transpiration would increase our ability to accurately estimate water availability and assess the responses of vegetation to climate change. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

SAP FLUX SEASONALITY STAND TRANSPIRATION EVAPOTRANSPIRATION DRY DECIDUOUS FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Soil CO2 efflux fluctuates in three different annual seasons in a semideciduous tropical forest in Yucatan, Mexico

El flujo de CO2 del suelo fluctúa en tres temporadas del año en un bosque tropical semideciduo de Yucatán, México

Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])

Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.

EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

How diverse are farming systems on the Eastern Gangetic Plains of South Asia? A multi-metric and multi-country assessment

Brendan Brown Pragya Timsina Emma Karki (2023, [Artículo])

While crop diversification has many benefits and is a stated government objective across the Eastern Gangetic Plains (EGP) of South Asia, the complexity of assessment has led to a rather limited understanding on the progress towards, and status of, smallholder crop diversification. Most studies focus on specific commodities or report as part of a singular index, use outdated secondary data, or implement highly localized studies, leading to broad generalisations and a lack of regional comparison. We collected representative primary data with more than 5000 households in 55 communities in Eastern Nepal, West Bengal (India) and Northwest Bangladesh to explore seasonally based diversification experiences and applied novel metrics to understand the nuanced status of farm diversification. While 66 crops were commercially grown across the region, only five crops and three crop families were widely grown (Poaceae, Malvaceae, and Brassicaceae). Non-cereal diversification across the region was limited (1.5 crops per household), though regional differentiation were evident particularly relating to livestock and off-farm activities, highlighting the importance of cross border studies. In terms of farmer's largest commercial plots, 20% of systems contained only rice, and 57% contained only rice/wheat/maize, with substantial regional diversity present. This raises concerns regarding the extent of commercially oriented high value and non-cereal diversification, alongside opportunities for diversification in the under-diversified pre-monsoon and monsoon seasons. Future promotional efforts may need to focus particularly on legumes to ensure the future sustainability and viability of farming systems.

Agricultural Production Systems Farming Systems Change CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRODUCTION CROPPING SYSTEMS DIVERSIFICATION FARMING SYSTEMS SUSTAINABLE INTENSIFICATION

Do provisioning ecosystem services change along gradients of increasing agricultural production?

Ronju Ahammad Stephanie Tomscha Sarah Gergel Frédéric Baudron Jean-Yves Duriaux Chavarría Samson Foli Dominic Rowland Josh Van Vianen Terence Sunderland (2024, [Artículo])

Context: Increasing agricultural production shapes the flow of ecosystem services (ES), including provisioning services that support the livelihoods and nutrition of people in tropical developing countries. Although our broad understanding of the social-ecological consequences of agricultural intensification is growing, how it impacts provisioning ES is still unknown. Objectives: We examined the household use of provisioning ES across a gradient of increasing agricultural production in seven tropical countries (Bangladesh, Burkina Faso, Cameroon, Ethiopia, Indonesia, Nicaragua and Zambia). We answered two overarching questions: (1) does the use of provisioning ES differ along gradients of agriculture production ranging from zones of subsistence to moderate and to high agriculture production? and (2) are there synergies and/or trade-offs within and among groups of ES within these zones? Methods: Using structured surveys, we asked 1900 households about their assets, livestock, crops, and collection of forest products. These questions allowed us to assess the number of provisioning ES households used, and whether the ES used are functionally substitutable (i.e., used similarly for nutrition, material, and energy). Finally, we explored synergies and trade-offs among household use of provisioning ES. Results: As agricultural production increased, provisioning ES declined both in total number and in different functional groups used. We found more severe decreases in ES for relatively poorer households. Within the functional groups of ES, synergistic relationships were more often found than trade-offs in all zones, including significant synergies among livestock products (dairy, eggs, meat) and fruits. Conclusions: Considering landscape context provides opportunities to enhance synergies among provisioning services for households, supporting resilient food systems and human well-being.

Agricultural Production Zones Agricultural Intensifcation Synergies and Trade-Offs Landscape Multifunctionality Social-Ecological Systems CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE INTENSIFICATION ECOSYSTEM SERVICES LANDSCAPE SOCIAL-ECOLOGICAL RESILIENCE ECOSYSTEM SERVICES