Búsqueda avanzada


Área de conocimiento




53 resultados, página 6 de 6

The Pacific harbor seal gut microbiota in Mexico: Its relationship with diet and functional inferences

ARLETTE MARIMAR PACHECO SANDOVAL (2019, [Artículo])

Diet is a primary driver of the composition of gut microbiota and is considered one of the main routes of microbial colonization. Prey identification is fundamental for correlating the diet with the presence of particular microbial groups. The present study examined how diet influenced the composition and function of the gut microbiota of the Pacific harbor seal (Phoca vitulina richardii) in order to better understand the role of prey consumption in shaping its microbiota. This species is a good indicator of the quality of the local environment due to both its foraging and haul-out site fidelity. DNA was extracted from 20 fecal samples collected from five harbor seal colonies located in Baja California, Mexico. The V4 region of 16S rRNA gene was amplified and sequenced using the Illumina technology. Results showed that the gut microbiota of the harbor seals was dominated by the phyla Firmicutes (37%), Bacteroidetes (26%) and Fusobacteria (26%) and revealed significant differences in its composition among the colonies. Funtional analysis using the PICRUSt software suggests a high number of pathways involved in the basal metabolism, such as those for carbohydrates (22%) and amino acids (20%), and those related to the degradation of persistent environmental pollutants. In addition, a DNA metabarcoding analysis of the same samples, via the amplification and sequencing of the mtRNA 16S and rRNA 18S genes, was used to identify the prey consumed by harbor seals revealing the consumption of prey with mainly demersal habits. Functional redundancy in the seal gut microbiota was observed, irrespective of diet or location. Our results indicate that the frequency of occurrence of specific prey in the harbor seal diet plays an important role in shaping the composition of the gut microbiota of harbor seals by influencing the relative abundance of specific groups of gut microorganisms. A significant relationship was found among diet, gut microbiota composition and OTUs assigned to a particular metabolic pathway. © 2019 Pacheco-Sandoval et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

RNA 16S, RNA 18S, amino acid analysis, animal food, Article, bacterium colony, Bacteroidetes, basal metabolic rate, biodegradation, controlled study, DNA barcoding, feces analysis, Firmicutes, Fusobacteria, intestine flora, metabolism, Mexico, microb BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)

Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3

OLIVIA CABANILLAS BERNAL (2019, [Artículo])

The variable domain of New Antigen Receptors (vNAR) from sharks, present special characteristics in comparison to the conventional antibody molecules such as: small size (12–15 kDa), thermal and chemical stability and great tissue penetration, that makes them a good alternative source as therapeutic or diagnostic agents. Therefore, it is essential to improve techniques used for the development and selection of vNAR antibodies that recognize distinct antigens. The development of synthetic antibody libraries offers a fast option for the generation of antibodies with the desired characteristics. In this work three synthetic antibody libraries were constructed; without cysteines (Cys), with one Cys and with two Cys residues within its CDR3, with the objective of determining whether the presence or absence of Cys in the CDR3 favors the isolation of vNAR clones from a synthetic library. The libraries were validated selecting against six mammalian proteins. At least one vNAR was found for each of the antigens, and a clone coming from the library without Cys in the CDR3 was selected with all the antigens. In vitro angiogenesis assay with the isolated anti-VEGF antibodies, suggest that these vNARs are capable of inhibiting in vitro angiogenesis. In silico analysis of anti-VEGF antibodies showed that vNARs from synthetic libraries could rival antibodies with affinity maturation by in silico modeling. © 2019 Cabanillas-Bernal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

aquaporin 1, carcinoembryonic antigen, cysteine, fibroblast growth factor 2, glycophorin A, leukemia inhibitory factor, vasculotropin, vasculotropin antibody, angiogenesis inhibitor, antibody, cysteine, lymphocyte antigen receptor, vasculotropin A, a BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOFÍSICA BIOFÍSICA

Rapid effects of marine reserves via larval dispersal

Richard Cudney Bueno (2009, [Artículo])

Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. © 2009 Cudney-Bueno et al.

article, environmental monitoring, fishery, larva, marine environment, marine species, Mexico, mollusc, nonhuman, oceanography, prediction, animal, biology, environmental protection, food industry, geography, growth, development and aging, larva, met CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA