Filtros
Filtrar por:
Tipo de publicación
- Artículo (25)
- Artículo (3)
- Libro (2)
- Objeto de congreso (1)
- Tesis de maestría (1)
Autores
- ML JAT (4)
- Mahesh Gathala (3)
- Jonathan Gabriel Escobar Flores (2)
- Sieglinde Snapp (2)
- Aradit Castellanos Vera (1)
Años de Publicación
Editores
- Universidad de Guanajuato (3)
- Universidad Autónoma de Ciudad Juárez. Instituto de Arquitectura, Diseño y Arte (2)
- Atsushi Fujimura, University of Guam, Guam (1)
- CICESE (1)
- Centro de Investigaciones Biológicas del Noroeste, S.C. (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (14)
- Repositorio Institucional CICESE (5)
- Repositorio Institucional CIBNOR (3)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (3)
- Repositorio Institucional CICY (2)
Tipos de Acceso
- oa:openAccess (31)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (15)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (9)
- OCEANOGRAFÍA (6)
- BIOLOGÍA Y QUÍMICA (5)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (5)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Jeroen Groot XiaoLin Yang (2022, [Artículo])
Holistic Analysis Model-Based Analysis CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP ROTATION FOOD SECURITY WATER USE ENVIRONMENTAL PROTECTION ECONOMIC VIABILITY
Manish Kakraliya madhu choudhary Mahesh Gathala Parbodh Chander Sharma ML JAT (2024, [Artículo])
The future of South Asia’s major production system (rice–wheat rotation) is at stake due to continuously aggravating pressure on groundwater aquifers and other natural resources which will further intensify with climate change. Traditional practices, conventional tillage (CT) residue burning, and indiscriminate use of groundwater with flood irrigation are the major drivers of the non-sustainability of rice–wheat (RW) system in northwest (NW) India. For designing sustainable practices in intensive cereal systems, we conducted a study on bundled practices (zero tillage, residue mulch, precise irrigation, and mung bean integration) based on multi-indicator (system productivity, profitability, and efficiency of water, nitrogen, and energy) analysis in RW system. The study showed that bundling conservation agriculture (CA) practices with subsurface drip irrigation (SDI) saved ~70 and 45% (3-year mean) of irrigation water in rice and wheat, respectively, compared to farmers’ practice/CT practice (pooled data of Sc1 and Sc2; 1,035 and 318 mm ha−1). On a 3-year system basis, CA with SDI scenarios (mean of Sc5–Sc8) saved 35.4% irrigation water under RW systems compared to their respective CA with flood irrigation (FI) scenarios (mean of Sc3 and Sc4) during the investigation irrespective of residue management. CA with FI system increased the water productivity (WPi) and its use efficiency (WUE) by ~52 and 12.3% (3-year mean), whereas SDI improved by 221.2 and 39.2% compared to farmers practice (Sc1; 0.69 kg grain m−3 and 21.39 kg grain ha−1 cm−1), respectively. Based on the 3-year mean, CA with SDI (mean of Sc5–Sc8) recorded −2.5% rice yield, whereas wheat yield was +25% compared to farmers practice (Sc1; 5.44 and 3.79 Mg ha−1) and rice and wheat yield under CA with flood irrigation were increased by +7 and + 11%, compared to their respective CT practices. Mung bean integration in Sc7 and Sc8 contributed to ~26% in crop productivity and profitability compared to farmers’ practice (Sc1) as SDI facilitated advancing the sowing time by 1 week. On a system basis, CA with SDI improved energy use efficiency (EUE) by ~70% and partial factor productivity of N by 18.4% compared to CT practices. In the RW system of NW India, CA with SDI for precise water and N management proved to be a profitable solution to address the problems of groundwater, residue burning, sustainable intensification, and input (water and energy) use with the potential for replication in large areas in NW India.
Direct Seeded Rice Subsurface Drip Irrigation Economic Profitability Energy and Nitrogen Efficiency CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE RICE SUBSURFACE IRRIGATION IRRIGATION SYSTEMS WATER PRODUCTIVITY ECONOMIC VIABILITY ENERGY EFFICIENCY NITROGEN-USE EFFICIENCY
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER
Conservation agriculture based sustainable intensification: India updates
ML JAT (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE SUSTAINABLE INTENSIFICATION LAND MANAGEMENT TILLAGE PLANT ESTABLISHMENT BIOMASS WATER MANAGEMENT
The water crisis in the south-central region of the Chihuahua State and the 1997 UN Convention
Jorge Arturo Salas Plata Mendoza Thelma J. Garcia (2022, [Artículo, Artículo])
The present writing focuses on the water crisis in the south-central part of Chihuahua State in the year 2020. Recent literature points to the drought, excess demand for the vital liquid and overpopulation of this region, among other issues, as the causes of the emergency. This paper argues that the reasons mentioned above are not causes, but effects of an economic policy of capital valorization and accumulation, which go far beyond the carrying capacity of the ecosystems and their capacity to regulate the polluting processes. The obsolescence of the water treaties between Mexico and the US make it necessary to consider other alternatives such as the 1997 UN Convention on water.
Chihuahua water crisis hydro-agricultural crisis carrying capacity expansive growth 1997 UN Convention Ecological Economics crisis del agua crisis hidroagrícola capacidad de carga crecimiento expansivo Convención de la ONU de 1997 Economía Ecológica CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
Solar Irrigation Pump (SIP) sizing tool: user manual (Beta version)
Santosh Mali Paresh Shirsath (2022, [Libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOLAR POWERED IRRIGATION SYSTEMS PUMPS IRRIGATION WATER MANUALS
Physiological ecology of Mexican CAM plants: history, progress, and opportunities
Joel David Flores Rivas Oscar Briones Villareal JOSE LUIS ANDRADE (2022, [Artículo])
"In Mexico, plants with crassulacean acid metabolism (CAM) are part of the Mexican culture, have different uses and are even emblematic. Unfortunately, only a small fraction of the Mexican CAM plants has been studied physiologically. For this review, the following questions were considered: What ecophysiological studies have been conducted with CAM species native to Mexico? What ecophysiological processes in Mexican CAM plants are the most studied? What type of ecophysiological studies with CAM plants are still needed? A database of scientific studies on CAM plant species from Mexico was documented, including field and laboratory works for species widely distributed, and those studies made outside Mexico with Mexican species. Physiological processes were grouped as germination, photosynthesis, and water relations. Most studies were done for CAM species of Cactaceae, Bromeliaceae, Asparagaceae and Orchidaceae, andmost ecophysiological studies have been done on germination of cacti. Field and laboratory studies on photosynthesis and water relations were mostly for terrestrial cacti and epiphytic bromeliads. There were few physiological studies with CAM seedlings in Mexico and few studies using stable isotopes of water and carbon of CAM plants in the field. More field and laboratory studies of physiological responses and plasticity of CAM plants to multiple stress factors are required to model plant responses to global climate change. In general, more physiological studies are essential for all CAM species and for species of the genus Clusia, with C3-CAM and CAM members, which can become ecologically important under some climate change scenarios."
Asparagaceae Bromeliaceae Cactaceae Germination Photosynthesis Water relations Orchidaceae BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) BIOLOGÍA VEGETAL (BOTÁNICA)
Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])
Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.
EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Mahesh Gathala ML JAT (2023, [Artículo])
A 3-year field experiment was setup to address the threat of underground water depletion and sustainability of agrifood systems. Subsurface drip irrigation (SDI) system combined with nitrogen management under conservation agriculture-based (CA) maize-wheat system (MWS) effects on crop yields, irrigation water productivity (WPi), nitrogen use efficiency (NUE) and profitability. Grain yields of maize, wheat, and MWS in the SDI with 100% recommended N were significantly higher by 15.8%, 5.2% and 11.2%, respectively, than conventional furrow/flood irrigation (CT-FI) system. System irrigation water savings (~ 55%) and the mean WPi were higher in maize, wheat, and MWS under the SDI than CT-FI system. There was saving of 25% of fertilizer N in maize and MWS whereas no saving of N was observed in wheat. Net returns from MWS were significantly higher (USD 265) under SDI with 100% N (with no subsidy) than CT-FI system despite with higher cost of production. The net returns were increased by 47% when considering a subsidy of 80% on laying SDI system. Our results showed a great potential of complementing CA with SDI and N management to maximize productivity, NUE, and WPi, which may be economically beneficial and environmentally sound in MWS in Trans-IGP of South Asia.
Subsurface Drip Irrigation Nitrogen Management Irrigation Water Productivity Water Savings CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA IRRIGATION WATER NITROGEN-USE EFFICIENCY CONSERVATION AGRICULTURE MAIZE WHEAT
Briseida Corzo Rivera Gabriel Castañeda Nolasco (2023, [Artículo, Artículo])
Access to water is a common struggle of the communities in the state of Chiapas, with the effects of urban expansion these struggles increase and with them the challenges that these populations already face, having a greater impact on the rural environment. The struggles to satisfy this basic need are a factor that has triggered processes that promote community participation. Based on a qualitative analysis, this paper compares two existing forms of participation in the rural communities of the Metropolitan Area of Tuxtla Gutierrez that allow the population to manage actions to improve their quality of life. The objective is to analyze how these processes promote or restrict the empowerment of the community and allow progress, not only in the population's access to water, but also in the construction of the right to the city. From the urban-rural linkages, the right to the city is discussed beyond the city, addressing other territories. The study identifies factors that show changes in the participation of the populations and strengthen the community, as well as factors in the relationships of the community and of the community with other actors that limit the scope of the processes.
Participation Right to the city Urban-rural linkages Access to water participación, derecho a la ciudad, vínculos urbano-rurales, acceso al agua. CIENCIAS SOCIALES CIENCIAS SOCIALES