Filtrar por:
Tipo de publicación
- Artículo (25)
- Tesis de maestría (16)
- Objeto de congreso (7)
- Tesis de doctorado (5)
- Artículo (2)
Autores
- David Hodson (3)
- Jonathan Gabriel Escobar Flores (3)
- MARIANA DELGADO FERNANDEZ (3)
- Alfredo Zavala González (2)
- Gerald Blasch (2)
Años de Publicación
Editores
- Centro de Investigaciones y Estudios Superiores en Antropología Social (10)
- CICESE (9)
- Myra E. Finkelstein, University of California Santa Cruz, United States of America (2)
- Asociación Latinoamericana para el Avance de las Ciencias (1)
- Asociación Mexicana de Mastozoología México (1)
Repositorios Orígen
- Repositorio Institucional CICESE (15)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (12)
- REPOSITORIO INSTITUCIONAL DEL CIESAS (10)
- Repositorio Institucional CIBNOR (6)
- Repositorio Institucional CICY (3)
Tipos de Acceso
- oa:openAccess (54)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (19)
- BIOLOGÍA Y QUÍMICA (13)
- CIENCIAS DE LA VIDA (13)
- CIENCIAS SOCIALES (10)
- PECES Y FAUNA SILVESTRE (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Variaciones en un transecto profundo frente a la costa de Nayarit, México
Emilio Palacios Hernández Luis Brito Castillo LAURA ELENA CARRILLO BIBRIEZCA CARLOS EDUARDO CABRERA RAMOS JORGE MANUEL MONTES ARECHIGA (2022, [Artículo])
"Six oceanographic cruises in a NE-SW transect were made nearshore of southern Sinaloa and Nayarit from March 2006 through May 2008, where no in situ hydrographic data are available. Applying the Thermodynamic Equation of Seawater 2010 (TEOS-10) to the observations, the hydrography and geostrophic currents of the region were characterized. Results indicate that surface variability (0-50 m) emerged mainly from seasonal atmospheric forcing. A relative salinity maximum was present during all cruises below this surface layer, which is attributed to a water mass intrusion of Subtropical Subsurface Water that could be associated with the Mexican Coastal Current. Another water mass intrusion is from the California Current. Samples from the 2007-2008 La Niña produced an uncommon circulation, where water flowing from the Gulf of California along the coast of Sinaloa was observed, opposite to what is commonly known as a mean circulation. This uncommon circulation matches the generation of anticyclonic eddies around the Islas Marias archipelago."
Gulf of California, Mexican Coastal Current, Nayarit Coast, seasonal variation, La Niña CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA DESCRIPTIVA OCEANOGRAFÍA DESCRIPTIVA
Vibrissa growth rate in California sea lions based on environmental and isotopic oscillations
MARTHA PATRICIA ROSAS HERNANDEZ (2018, [Artículo])
Pinniped vibrissae provide information on changes in diet at seasonal and annual scales; however, species-specific growth patterns must first be determined in order to interpret these data. In this study, a simple linear model was used to estimate the growth rate of vibrissae from adult female California sea lions (Zalophus californianus) from San Esteban Island in the Gulf of California, Mexico. The δ15N and δ13C values do not display a marked oscillatory pattern that would permit direct determination of the time period contained in each vibrissa; thus, time (age) was calculated in two ways: 1) based on the correlation between the observed number of peaks (Fourier series) in the δ15N profile and the length of each vibrissa, and 2) through direct comparison with the observed number of peaks in the δ15N profile. Cross-correlation confirmed that the two peaks in the δ15N profile reflected the two peaks in the chlorophyll-a concentration recorded annually around the island. The mean growth rate obtained from the correlation was 0.08 ± 0.01 mm d-1, while that calculated based on the observed number of peaks was 0.10 ± 0.05 mm d-1. Both are consistent with the rates reported for adult females of other otariid species (0.07 to 0.11 mm d-1). Vibrissa growth rates vary by individual, age, sex, and species; moreover, small differences in the growth rate can result in significant differences over the time periods represented by the isotopic signal. Thus, it is important to assess this parameter on a species-by-species basis. © 2018 Rosas-Hernández et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
carbon, nitrogen, animal, California, chemistry, diet, female, island (geological), Mexico, Otariidae, physiology, Animals, California, Carbon Isotopes, Diet, Female, Islands, Mexico, Nitrogen Isotopes, Sea Lions BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA INMUNOLOGÍA INMUNOLOGÍA
Do marine reserves increase prey for California sea lions and Pacific harbor seals?
ALEJANDRO ARIAS DEL RAZO (2019, [Artículo])
Community marine reserves are geographical areas closed to fishing activities, implemented and enforced by the same fishermen that fish around them. Their main objective is to recover commercial stocks of fish and invertebrates. While marine reserves have proven successful in many parts of the world, their success near important marine predator colonies, such as the California sea lion (Zalophus californianus) and the Pacific harbor seal (Phoca vitulina richardii), is yet to be analyzed. In response to the concerns expressed by local fishermen about the impact of the presence of pinnipeds on their communities’ marine reserves, we conducted underwater surveys around four islands in the Pacific west of the Baja California Peninsula: two without reserves (Todos Santos and San Roque); one with a recently established reserve (San Jeronimo); and, a fourth with reserves established eight years ago (Natividad). All these islands are subject to similar rates of exploitation by fishing cooperatives with exclusive rights. We estimated fish biomass and biodiversity in the seas around the islands, applying filters for potential California sea lion and harbor seal prey using known species from the literature. Generalized linear mixed models revealed that the age of the reserve has a significant positive effect on fish biomass, while the site (inside or outside of the reserve) did not, with a similar result found for the biomass of the prey of the California sea lion. Fish biodiversity was also higher around Natividad Island, while invertebrate biodiversity was higher around San Roque. These findings indicate that marine reserves increase overall fish diversity and biomass, despite the presence of top predators, even increasing the numbers of their potential prey. Community marine reserves may help to improve the resilience of marine mammals to climate-driven phenomena and maintain a healthy marine ecosystem for the benefit of both pinnipeds and fishermen. © 2019 Arias-Del-Razo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, biodiversity, biomass, climate change, ecosystem resilience, environmental exploitation, fish stock, fishing, marine environment, marine invertebrate, nonhuman, Phoca vitulina, Pinnipedia, prey searching, Zalophus californianus, animal, biom BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)
Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift
MARY CARMEN RUIZ DE LA TORRE (2013, [Artículo])
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. © 2013 Ruiz-de la Torre et al.
chlorophyll, algal bloom, article, cell count, cell density, coastal waters, controlled study, dinoflagellate, Lingulodinium polyedrum, meteorological phenomena, Mexico, near surface temperature stratification, nonhuman, nutrient concentration, popul CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA