Filtros
Filtrar por:
Tipo de publicación
- Artículo (45)
- Artículo (4)
- Tesis de maestría (4)
- Tesis de doctorado (3)
- Objeto de congreso (1)
Autores
- ML JAT (3)
- Abebe Menkir (2)
- Akshaya Biswal (2)
- Ana Luisa Garcia-Oliveira (2)
- C.M. Parihar (2)
Años de Publicación
Editores
- CICESE (4)
- Universidad Autónoma de Ciudad Juárez (3)
- Centro de Investigaciones Biológicas del Noroeste, S. C. (2)
- Multidisciplinary Digital Publishing Institute (2)
- & (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (25)
- Repositorio Institucional CICESE (13)
- Repositorio Institucional CIBNOR (8)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (4)
- REPOSITORIO INSTITUCIONAL DEL CIO (1)
Tipos de Acceso
- oa:openAccess (53)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (32)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (12)
- OCEANOGRAFÍA (11)
- BIOLOGÍA Y QUÍMICA (8)
- CIENCIAS DE LA VIDA (8)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
ML JAT Rajeev Gupta (2022, [Artículo])
Decomposition Rate Nitrogen Release Placement Effect CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP RESIDUES DEGRADATION NITROGEN PLACEMENT
Exploring GWAS and genomic prediction to improve Septoria tritici blotch resistance in wheat
Admas Alemu Abebe Pawan Singh Aakash Chawade (2023, [Artículo])
Septoria Tritici Blotch Wheat Breeding Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOME-WIDE ASSOCIATION STUDIES MYCOSPHAERELLA GRAMINICOLA DISEASE RESISTANCE WHEAT PLANT GROWTH
The water crisis in the south-central region of the Chihuahua State and the 1997 UN Convention
Jorge Arturo Salas Plata Mendoza Thelma J. Garcia (2022, [Artículo, Artículo])
The present writing focuses on the water crisis in the south-central part of Chihuahua State in the year 2020. Recent literature points to the drought, excess demand for the vital liquid and overpopulation of this region, among other issues, as the causes of the emergency. This paper argues that the reasons mentioned above are not causes, but effects of an economic policy of capital valorization and accumulation, which go far beyond the carrying capacity of the ecosystems and their capacity to regulate the polluting processes. The obsolescence of the water treaties between Mexico and the US make it necessary to consider other alternatives such as the 1997 UN Convention on water.
Chihuahua water crisis hydro-agricultural crisis carrying capacity expansive growth 1997 UN Convention Ecological Economics crisis del agua crisis hidroagrícola capacidad de carga crecimiento expansivo Convención de la ONU de 1997 Economía Ecológica CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
Stability of FeVO4-II under Pressure: A First-Principles Study
PRICILA BETBIRAI ROMERO VAZQUEZ SINHUE LOPEZ MORENO Daniel Errandonea (2022, [Artículo])
"In this work, we report first-principles calculations to study FeVO4 in the CrVO4-type (phase II) structure under pressure. Total-energy calculations were performed in order to analyze the structural parameters, the electronic, elastic, mechanical, and vibrational properties of FeVO4-II up to 9.6 GPa for the first time. We found a good agreement in the structural parameters with the experimental results available in the literature. The electronic structure analysis was complemented with results obtained from the Laplacian of the charge density at the bond critical points within the Quantum Theory of Atoms in Molecules methodology. Our findings from the elastic, mechanic, and vibrational properties were correlated to determine the elastic and dynamic stability of FeVO4-II under pressure. Calculations suggest that beyond the maximum pressure covered by our study, this phase could undergo a phase transition to a wolframite-type structure, such as in CrVO4 and InVO4."
FeVO4 under pressure CrVO4-type structure First-principles Mechanical properties Vibrational properties Electronic properties CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA FÍSICA FÍSICA DEL ESTADO SÓLIDO CRISTALOGRAFÍA CRISTALOGRAFÍA
Hari Sankar Nayak C.M. Parihar Shankar Lal Jat ML JAT Ahmed Abdallah (2022, [Artículo])
Non-Linear Growth Model Nitrogen Remobilization Right Placement Precision Nitrogen Management CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GROWTH MODELS NITROGEN NUTRIENT MANAGEMENT
Alejandra Miranda Carrazco Yendi Navarro-Noya Bram Govaerts Nele Verhulst Luc Dendooven (2022, [Artículo])
Plant-associated microorganisms that affect plant development, their composition, and their functionality are determined by the host, soil conditions, and agricultural practices. How agricultural practices affect the rhizosphere microbiome has been well studied, but less is known about how they might affect plant endophytes. In this study, the metagenomic DNA from the rhizosphere and endophyte communities of root and stem of maize plants was extracted and sequenced with the “diversity arrays technology sequencing,” while the bacterial community and functionality (organized by subsystems from general to specific functions) were investigated in crops cultivated with or without tillage and with or without N fertilizer application. Tillage had a small significant effect on the bacterial community in the rhizosphere, but N fertilizer had a highly significant effect on the roots, but not on the rhizosphere or stem. The relative abundance of many bacterial species was significantly different in the roots and stem of fertilized maize plants, but not in the unfertilized ones. The abundance of N cycle genes was affected by N fertilization application, most accentuated in the roots. How these changes in bacterial composition and N genes composition might affect plant development or crop yields has still to be unraveled.
Bacterial Community Structure DArT-Seq Bacterial Community Functionality Genes Involved in N Cycling CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRACTICES MAIZE RHIZOSPHERE STEMS NITROGEN FERTILIZERS
Gerald Blasch David Hodson Francelino Rodrigues (2023, [Artículo])
Very high (spatial and temporal) resolution satellite (VHRS) and high-resolution unmanned aerial vehicle (UAV) imagery provides the opportunity to develop new crop disease detection methods at early growth stages with utility for early warning systems. The capability of multispectral UAV, SkySat and Pleiades imagery as a high throughput phenotyping (HTP) and rapid disease detection tool for wheat rusts is assessed. In a randomized trial with and without fungicide control, six bread wheat varieties with differing rust resistance were monitored using UAV and VHRS. In total, 18 spectral features served as predictors for stem and yellow rust disease progression and associated yield loss. Several spectral features demonstrated strong predictive power for the detection of combined wheat rust diseases and the estimation of varieties’ response to disease stress and grain yield. Visible spectral (VIS) bands (Green, Red) were more useful at booting, shifting to VIS–NIR (near-infrared) vegetation indices (e.g., NDVI, RVI) at heading. The top-performing spectral features for disease progression and grain yield were the Red band and UAV-derived RVI and NDVI. Our findings provide valuable insight into the upscaling capability of multispectral sensors for disease detection, demonstrating the possibility of upscaling disease detection from plot to regional scales at early growth stages.
Very High Resolution Imagery Disease Detection Methods Early Growth Stages CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA UNMANNED AERIAL VEHICLES STEM RUST PHENOTYPING HIGH-THROUGHPUT PHENOTYPING WHEAT
Manje Gowda Prasanna Boddupalli Kanwarpal Dhugga Vijay Chaikam (2023, [Artículo])
R1-nj Marker Embryo Rescue False Positives False Detection Rate False Negative Rate CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DOUBLED HAPLOIDS MAIZE BREEDING PROGRAMMES INBRED LINES CROPS
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER
An efficient transformation method for genome editing of elite bread wheat cultivars
Akshaya Biswal Kanwarpal Dhugga (2023, [Artículo])
Particle Bombardment Wheat Growth-Regulating Factor 4 Wheat Growth-Interacting Factor Wheat Mildew Locus O CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CRISPR GENE EDITING TRANSFORMATION WHEAT