Búsqueda avanzada


Área de conocimiento




78 resultados, página 6 de 8

Multicriteria assessment of alternative cropping systems at farm level. A case with maize on family farms of South East Asia

Santiago Lopez-Ridaura (2023, [Artículo])

CONTEXT: Integration of farms into markets with adoption of maize as a cash crop can significantly increase income of farms of the developing world. However, in some cases, the income generated may still be very low and maize production may also have strong negative environmental and social impacts. OBJECTIVE: Maize production in northern Laos is taken as a case to study how far can farms' performance be improved with improved crop management of maize with the following changes at field level: good timing and optimal soil preparation and sowing, allowing optimal crop establishment and low weed infestation. METHODS: We compared different farm types' performance on locally relevant criteria and indicators embodying the three pillars of sustainability (environmental, economic and social). An integrated assessment approach was combined with direct measurement of indicators in farmers' fields to assess eleven criteria of local farm sustainability. A bio-economic farm model was used for scenario assessment in which changes in crop management and the economic environment of farms were compared to present situation. The farm model was based on mathematical programming maximizing income under constraints related to i) household composition, initial cash and rice stocks and land type, and ii) seasonal balances of cash, labour and food. The crop management scenarios were built based on a diagnosis of the causes of variations in the agronomic and environmental performances of cropping systems, carried out in farmers' fields. RESULTS AND CONCLUSIONS: Our study showed that moderate changes in crop management on maize would improve substantially farm performance on 4 to 6 criteria out of the 11 assessed, depending on farm types. The improved crop management of maize had a high economic attractiveness for every farm type simulated (low, medium and high resource endowed farms) even at simulated production costs more than doubling current costs of farmers' practices. However, while an improvement of the systems performance was attained in terms of agricultural productivity, income generation, work and ease of work, herbicide leaching, improved soil quality and nitrogen balance, trade-offs were identified with other indicators such as erosion control and cash outflow needed at the beginning of the cropping season. SIGNIFICANCE: Using farm modelling for multicriteria assessment of current and improved maize cropping systems for contrasted farm types helped capture main opportunities and constraints on local farm sustainability, and assess the trade-offs that new options at field level may generate at farm level.

Bio-Economic Farm Model Smallholder Farms CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CASH CROPS INDICATORS SMALLHOLDERS CROPPING SYSTEMS MAIZE

Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system

Alison Laing Akbar Hossain (2023, [Artículo])

The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS

Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems

Tek Sapkota (2023, [Documento de trabajo])

Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS

Remote sensing of quality traits in cereal and arable production systems: A review

Zhenhai  Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])

Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.

Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS

Review of Nationally Determined Contributions (NCD) of Colombia from the perspective of food systems

Tek Sapkota (2023, [Documento de trabajo])

Food is a vital component of Colombia's economy. The impact of climate change on agriculture and food security in the country is severe. The effects have resulted in decreased production and in the productivity of agricultural soil. Desertification processes are accelerating and intensifying. Colombia's government formally submitted its Nationally Determined Contribution (NDC) on December 29, 2020. This paper examines Colombia's NDC from the standpoint of the food system.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES

Research for development approaches in mixed crop-livestock systems of the Ethiopian highlands

Million Gebreyes James Hammond Lulseged Tamene Getachew Agegnehu Rabe Yahaya Anthony Whitbread (2023, [Artículo])

This study presents processes and success stories that emerged from Africa RISING's Research for Development project in the Ethiopian Highlands. The project has tested a combination of participatory tools at multiple levels, with systems thinking and concern for sustainable and diversified livelihoods. Bottom-up approaches guided the selection of technological interventions that could address the priority farming system challenges of the communities, leading to higher uptake levels and increased impact. Joint learning, appropriate technology selection, and the creation of an enabling environment such as the formation of farmer research groups, the establishment of innovation platforms, and capacity development for institutional and technical innovations were key to this study. The study concludes by identifying key lessons that focus more on matching innovations to community needs and geographies, systems orientation/integration of innovations, stepwise approaches to enhance the adoption of innovations, documenting farmers' capacity to modify innovations, building successful partnerships, and facilitating wider scaling of innovations for future implementation of agricultural research for development projects.

Action Research Systems Thinking CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION PARTNERSHIPS SCALING UP INTEGRATED CROP-LIVESTOCK SYSTEMS