Title

Autómata Celular Estocástico paralelizado por GPU aplicado a la simulación de enfermedades infecciosas en grandes poblaciones

Stochastic Cellular Automata approach for infectious disease simulation on large populations parallelized by GPU

Author

HECTOR CUESTA ARVIZU

Adrián Trueba Espinosa

José Sergio Ruiz Castilla

Access level

Open Access

Summary or description

Un gran número de áreas de la ciencia están siendo beneficiadas por la reducción de tiempo de cómputo gracias al uso de las Unidades Gráficas de Proceso (GPU). En el caso de la Epidemiología, tales unidades agilizan la simulación de escenarios con poblaciones grandes, escenarios en los que el tiempo de procesamiento es muy significativo. El presente artículo introduce la simulación de eventos epidemiológicos basado en un modelo de Autómatas Celulares Estocásticos (AC), el cual ofrece la implementación de las características principales de una enfermedad infecciosa a gran escala: contacto, vecindario, trayectorias y transmisibilidad. Un caso de estudio es simulado en una implementación del algoritmo AC para una enfermedad infecciosa de tipo SEIRS (Susceptible, Expuesto, Infectado, Recuperado y Susceptible). Una población de 1 000 000 de individuos es paralelizada a través de un algoritmo de balanceo de procesos implementado en el lenguaje de programación C-CUDA. El resultado dado por el software paralelizado por GPU es comparado contra un análisis hecho del modelo paralelizado por multi-hilos CPU. Los resultados demuestran que el tiempo de cómputo puede ser reducido significativamente gracias al uso de C-CUDA.

In science, a large number of areas are being benefited by the reduction of computational time with the use of Graphics Processing Units (GPU). In the case of Epidemiology, the benefit consists in the speedup of simulation of scenarios with bigger populations in which the processing time is large. This article introduces an epidemiological event simulation with a model based on Stochastic Cellular Automata (SCA). This model provides an implementation of the main features of a large-scale infectious disease: contact, neighborhood, trajectories and transmissibility. A case study is simulated on an implementation of the SCA algorithm for an infectious disease type SEIRS (Susceptible, Exposed, Infected, Recovered and Susceptible). A population with 1 000 000 of individuals is parallelized through a process balancing algorithm implemented in C-CUDA. The result given by the GPU parallelized software is compared against a parallelized model analysis made by multi-threaded CPU. The results show that the computation time can be significantly reduced through the use of C-CUDA.

Publisher

Universidad de Guanajuato

Publish date

September 30, 2012

Publication type

Article

Publication version

Published Version

Format

application/pdf

Source

Acta Universitaria: Multidisciplinary Scientific Journal. Vol. 22 Num 6 (2012)

Language

Spanish

Relation

https://doi.org/10.15174/au.2012.356

Source repository

Repositorio Institucional de la Universidad de Guanajuato

Downloads

0

Comments



You need to sign in or sign up to comment.