Autor: Suchismita Mondal

Prediction models for canopy hyperspectral reflectance in wheat breeding data

Osval Antonio Montesinos-Lopez Jose Crossa Gustavo de los Campos Gregorio Alvarado Suchismita Mondal Jessica Rutkoski Lorena González Pérez Juan Burgueño (2016)

Vegetation indices (VI) generated by using some bands from hyperspectral cameras are used as predictors of primary traits. This study proposes models that use all available bands as predictors of primary traits. The proposed models were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square (PLS). The results were compared with the OLS performed using as predictors each of the eight VIs individually and combined. The data set comes from CIMMYT’s Global Wheat Program and comprises 1170 genotypes evaluated for grain yield in five environments with the reflectance data measured in 250 discrete narrow bands ranging between 492 and 851 nm. in 9 time-points of the crop cycle. Results show that using all the bands simultaneously produced better predictions than using one VI alone or all the VI together, but when used only the bands with heritabilities > 0.5 in Drought environment, the predictions improved, while in the rest of the environments, using all the bands simultaneously produced slightly better prediction accuracies. The models with highest prediction when using all bands were functional B-spline and Fourier. Time-point 6 gives gave promising prediction accuracies for wheat lines before harvesting.

Dataset

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA

Prediction models for canopy hyperspectral reflectance in wheat breeding data

Osval Antonio Montesinos-Lopez Jose Crossa Gustavo de los Campos Gregorio Alvarado Suchismita Mondal Jessica Rutkoski Lorena González Pérez Juan Burgueño (2016)

Vegetation indices (VI) generated by using some bands from hyperspectral cameras are used as predictors of primary traits. This study proposes models that use all available bands as predictors of primary traits. The proposed models were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square (PLS). The results were compared with the OLS performed using as predictors each of the eight VIs individually and combined. The data set comes from CIMMYT’s Global Wheat Program and comprises 1170 genotypes evaluated for grain yield in five environments with the reflectance data measured in 250 discrete narrow bands ranging between 492 and 851 nm. in 9 time-points of the crop cycle. Results show that using all the bands simultaneously produced better predictions than using one VI alone or all the VI together, but when used only the bands with heritabilities > 0.5 in Drought environment, the predictions improved, while in the rest of the environments, using all the bands simultaneously produced slightly better prediction accuracies. The models with highest prediction when using all bands were functional B-spline and Fourier. Time-point 6 gives gave promising prediction accuracies for wheat lines before harvesting.

Dataset

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA

Haplotype-based genome-wide association study unveils stable genomic regions for grain yield in CIMMYT spring bread wheat

deepmala sehgal Suchismita Mondal Leonardo Abdiel Crespo Herrera Govindan Velu Philomin Juliana JULIO HUERTA_ESPINO Sandesh Kumar Shrestha Jesse Poland Ravi Singh Susanne Dreisigacker (2020)

Genetic architecture of grain yield (GY) has been extensively investigated in wheat using genome wide association study (GWAS) approach. However, most studies have used small panel sizes in combination with large genotypic data, typical examples of the so-called ‘large p small n’ or ‘short-fat data’ problem. Further, use of bi-allelic SNPs accentuated ‘missing heritability’ issues and therefore reported markers had limited impact in wheat breeding. We performed haplotype-based GWAS using 519 haplotype blocks on seven large cohorts of advanced CIMMYT spring bread wheat lines comprising overall 6,333 genotypes. In addition, epistatic interactions among the genome-wide haplotypes were investigated, an important aspect which has not yet been fully explored in wheat GWAS in order to address the missing heritability. Our results unveiled the intricate genetic architecture of GY controlled by both main and epistatic effects. The importance of these results from practical applications in the CIMMYT breeding program is discussed.

Dataset

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA

Replication Data for: Elucidating the genetics of grain yield and stress-resilience in bread wheat using a large-scale genome-wide association mapping study with 55,568 lines

Philomin Juliana Ravi Singh Jesse Poland Sandesh Kumar Shrestha JULIO HUERTA_ESPINO Govindan Velu Suchismita Mondal Leonardo Abdiel Crespo Herrera UTTAM KUMAR arun joshi Thomas Payne Pradeep Kumar Bhati Vipin Tomar (2021)

A large-scale genome-wide association study was carried out to dissect the genetic architecture of wheat grain yield potential and stress-resilience. Based on the findings, grain yield-associated marker profiles were generated for a large panel of 73,142 wheat lines and the grain-yield favorable allele frequencies were also determined. The marker profile data are presented in this dataset.

Dataset

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA