Búsqueda avanzada


Área de conocimiento




Filtrar por:

Tipo de publicación

Autores

Años de Publicación

Editores

Repositorios Orígen

Tipos de Acceso

Idiomas

Materias

Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales

54 resultados, página 1 de 6

Closing the yield gap of soybean (Glycine max (L.) Merril) in Southern Africa: a case of Malawi, Zambia, and Mozambique

Siyabusa Mkuhlani Isaiah Nyagumbo (2023, [Artículo])

Introduction: Smallholder farmers in Sub-Saharan Africa (SSA) are increasingly producing soybean for food, feed, cash, and soil fertility improvement. Yet, the difference between the smallholder farmers’ yield and either the attainable in research fields or the potential from crop models is wide. Reasons for the yield gap include low to nonapplication of appropriate fertilizers and inoculants, late planting, low plant populations, recycling seeds, etc. Methods: Here, we reviewed the literature on the yield gap and the technologies for narrowing it and modelled yields through the right sowing dates and suitable high-yielding varieties in APSIM. Results and Discussion: Results highlighted that between 2010 and 2020 in SSA, soybean production increased; however, it was through an expansion in the cropped area rather than a yield increase per hectare. Also, the actual smallholder farmers’ yield was 3.8, 2.2, and 2.3 times lower than the attainable yield in Malawi, Zambia, and Mozambique, respectively. Through inoculants, soybean yield increased by 23.8%. Coupling this with either 40 kg ha−1 of P or 60 kg ha−1 of K boosted the yields by 89.1% and 26.0%, respectively. Overall, application of 21–30 kg ha-1 of P to soybean in SSA could increase yields by about 48.2%. Furthermore, sowing at the right time increased soybean yield by 300%. Although these technologies enhance soybean yields, they are not fully embraced by smallholder farmers. Hence, refining and bundling them in a digital advisory tool will enhance the availability of the correct information to smallholder farmers at the right time and improve soybean yields per unit area.

Decision Support Tools Digital Tools Site-Specific Recommendations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DECISION SUPPORT SYSTEMS LEGUMES YIELDS SOYBEANS

On-farm assessment of yield and quality traits in durum wheat

Facundo Tabbita Iván Ortíz-Monasterios Francisco Javier Pinera-Chavez Maria Itria Ibba Carlos Guzman (2023, [Artículo])

BACKGROUND: Durum wheat is key source of calories and nutrients for many regions of the world. Demand for it is predicted to increase. Further efforts are therefore needed to develop new cultivars adapted to different future scenarios. Developing a novel cultivar takes, on average, 10 years and advanced lines are tested during the process, in general, under standardized conditions. Although evaluating candidate genotypes for commercial release under different on-farm conditions is a strategy that is strongly recommended, its application for durum wheat and particularly for quality traits has been limited. This study evaluated the grain yield and quality performance of eight different genotypes across five contrasting farmers’ fields over two seasons. Combining different analysis strategies, the most outstanding and stable genotypes were identified. RESULTS: The analyses revealed that some traits were mainly explained by the genotype effect (thousand kernel weight, flour sodium dodecyl sulfate sedimentation volume, and flour yellowness), others by the management practices (yield and grain protein content), and others (test weight) by the year effect. In general, yield showed the highest range of variation across genotypes, management practices, and years and test weight the narrowest range. Flour yellowness was the most stable trait across management conditions, while yield-related traits were the most unstable. We also determined the most representative and discriminative field conditions, which is a beneficial strategy when breeders are constrained in their ability to develop multi-environment experiments. CONCLUSIONS: We concluded that assessing genotypes in different farming systems is a valid and complementary strategy for on-station trials for determining the performance of future commercial cultivars in heterogeneous environments to improve the breeding process and resources.

Wheat Quality GGE Analysis Flour Yellowness CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FLOURS WHEAT QUALITY YIELDS FIELD EXPERIMENTATION