Filtrar por:
Tipo de publicación
Autores
- CARLOS ABRAHAM GUERRERO RUIZ (2)
- ANAID MEZA VILLEZCAS (1)
- Aarón Barraza Celis (1)
- Abdelfattah DABABAT (1)
- Abebe Menkir (1)
Años de Publicación
Editores
- Amitava Mukherjee, VIT University, India (1)
- Dongsheng Zhou, Beijing Institute of Microbiology and Epidemiology, China (1)
- Gabriel Moreno-Hagelsieb, Wilfrid Laurier University, Canada (1)
- Instituto Mexicano de Tecnología del Agua (1)
- Multidisciplinary Digital Publishing Institute (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (7)
- Repositorio Institucional CICESE (3)
- Repositorio institucional del IMTA (2)
- Repositorio Institucional CIBNOR (1)
Tipos de Acceso
- oa:openAccess (13)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (7)
- BIOLOGÍA Y QUÍMICA (5)
- GENÉTICA (5)
- CIENCIAS DE LA VIDA (4)
- MAIZE (3)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
ELIANA VALENCIA LOZANO LISSET HERRERA ISIDRON Osiel Salvador Recoder-Meléndez Aarón Barraza Celis JOSE LUIS CABRERA PONCE (2022, [Artículo])
"Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein–protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs–MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9–may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging."
transcriptome-wide analysis, microtubers, potato, Solanum tuberosum, darkness, cell cycle, ribosomal proteins, PEBP family genes, cytokinin BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA MOLECULAR DE PLANTAS GENÉTICA MOLECULAR DE PLANTAS
CARLOS ABRAHAM GUERRERO RUIZ (2017, [Artículo])
Vibrio parahaemolyticus is an important human pathogen that has been isolated worldwide from clinical cases, most of which have been associated with seafood consumption. Environmental and clinical toxigenic strains of V. parahaemolyticus that were isolated in Mexico from 1998 to 2012, including those from the only outbreak that has been reported in this country, were characterized genetically to assess the presence of the O3:K6 pandemic clone, and their genetic relationship to strains that are related to the pandemic clonal complex (CC3). Pathogenic tdh+ and tdh+/trh+ strains were analyzed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Also, the entire genome of a Mexican O3:K6 strain was sequenced. Most of the strains were tdh/ORF8-positive and corresponded to the O3:K6 serotype. By PFGE and MLST, there was very close genetic relationship between ORF8/O3:K6 strains, and very high genetic diversities from non-pandemic strains. The genetic relationship is very close among O3:K6 strains that were isolated in Mexico and sequences that were available for strains in the CC3, based on the PubMLST database. The whole-genome sequence of CICESE-170 strain had high similarity with that of the reference RIMD 2210633 strain, and harbored 7 pathogenicity islands, including the 4 that denote O3:K6 pandemic strains. These results indicate that pandemic strains that have been isolated in Mexico show very close genetic relationship among them and with those isolated worldwide. © 2017 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, bacterial strain, biofouling, controlled study, Crassostrea, food intake, gene sequence, genetic analysis, genetic variability, Japan, Mexican, Mexico, molecular phylogeny, nonhuman, pandemic, pathogenicity island, sea food, serotyping, toxi BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA
ANAID MEZA VILLEZCAS (2019, [Artículo])
Vibrio cholerae is an important human pathogen causing intestinal disease with a high incidence in developing countries. V. cholerae can switch between planktonic and biofilm lifestyles. Biofilm formation is determinant for transmission, virulence and antibiotic resistance. Due to the enhanced antibiotic resistance observed by bacterial pathogens, antimicrobial nanomaterials have been used to combat infections by stopping bacterial growth and preventing biofilm formation. In this study, the effect of the nanocomposites zeolite-embedded silver (Ag), copper (Cu), or zinc (Zn) nanoparticles (NPs) was evaluated in V. cholerae planktonic cells, and in two biofilm states: pellicle biofilm (PB), formed between air-liquid interphase, and surface-attached biofilm (SB), formed at solid-liquid interfaces. Each nanocomposite type had a distinctive antimicrobial effect altering each V. cholerae lifestyles differently. The ZEO-AgNPs nanocomposite inhibited PB formation at 4 μg/ml, and prevented SB formation and eliminated planktonic cells at 8 μg/ml. In contrast, the nanocomposites ZEO-CuNPs and ZEO-ZnNPs affect V. cholerae viability but did not completely avoid bacterial growth. At transcriptional level, depending on the nanoparticles and biofilm type, nanocomposites modified the relative expression of the vpsL, rbmA and bap1, genes involved in biofilm formation. Furthermore, the relative abundance of the outer membrane proteins OmpT, OmpU, OmpA and OmpW also differs among treatments in PB and SB. This work provides a basis for further study of the nanomaterials effect at structural, genetic and proteomic levels to understand the response mechanisms of V. cholerae against metallic nanoparticles. © 2019 Meza-Villezcas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
bacterial protein, copper nanoparticle, nanocomposite, OmpT protein, OmpU protein, OmpW protein, outer membrane protein A, silver nanoparticle, unclassified drug, zeolite, zinc nanoparticle, antiinfective agent, copper, metal nanoparticle, nanocompos BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA