Title

Sea surface temperature and mixed layer depth changes due to cold-air outbreak in the gulf of México

Author

ELBA ELSA VILLANUEVA URRUTIA

VICTOR MANUEL MENDOZA CASTRO

JULIAN JORGE ADEM CHAHIN

Access level

Open Access

Publication reference

URL/http://www.revistascca.unam.mx/atm/index.php/atm/article/view/19484

Summary or description

The impact of a cold-air outbreak (CAO) on the mixed layer in the Gulf of México (GoM), during the period 18-23 October 1999, is shown in this work. A numerical model, based on the thermal energy equation and the balance equation between the thermal and mechanical energies, is used for computing both, the sea surface temperature (SST) and the sea mixed layer depth (MLD) changes due to atmospheric forcing before and during the CAO. The importance of the contributions to the temperature tendency by thermal forcing at the surface, the vertical entrainment of cold water from the thermocline, the horizontal transport of thermal energy by ocean currents and by turbulent eddies in the mixed layer are analyzed, as well as the contributions to the entrainment velocity by deepening of the mixed layer and the Ekman's pumping velocity. During the passage of the CAO on the Gulf of México the SST changes were markedly influenced by the increase in the surface wind speed. At the end of the period the experiments show that the vertical entrainment turned out to be the most determining process in the cooling of the mixed layer, even overhead of the latent and sensible heat fluxes and the horizontal transport by ocean currents and by turbulent eddies.

Publisher

Universidad Nacional Autónoma de México. Centro de Ciencias de la Atmósfera

Publish date

October 1, 2010

Publication type

Article

Publication version

Published Version

Format

application/pdf

Source

Atmósfera; Vol 23, No 4 (2010)

ISSN: 0187-6236

Language

English

Audience

Researchers

Students

Source repository

Repositorio Institucional del Centro de Ciencias de la Atmósfera de la UNAM

Downloads

0

Comments



You need to sign in or sign up to comment.