Título

Replication Data for: Sparse kernel models provide optimization of training set design for genome-based prediction in multi-year wheat breeding data

Autor

Marco Lopez-Cruz

Susanne Dreisigacker

Leonardo Abdiel Crespo Herrera

Alison Bentley

Ravi Singh

Suchismita Mondal

Paulino Pérez-Rodríguez

Jose Crossa

Nivel de Acceso

Acceso Abierto

Descripción

Abstracto - When genomic selection (GS) is used in breeding schemes, data from multiple generations can provide opportunities to increase sample size and thus the likelihood of extracting useful information from the training data. The Sparse Selection Index (SSI), is is a method for optimizing training data selection. The data files provided with this study include a large multigeneration wheat dataset of grain yield for 68,836 lines generated across eight cycles (years) as well as genotypic data that were analyzed to test this method. The results of the analysis are published in the corresponding journal article.

Editor

International Maize and Wheat Improvement Center

Fecha de publicación

2021

Tipo de recurso

Dataset

Recurso de información

Repositorio Orígen

Repositorio Institucional de Datos y Software de Investigación del CIMMYT

Descargas

0

Comentarios



Necesitas iniciar sesión o registrarte para comentar.