Title

Synthesis of hollow carbon spheres by chemical activation of carbon nanoparticles for their use in electrochemical capacitor

Author

Cesar Eduardo Sanchez Rodriguez

EDUARDO TOVAR MARTINEZ

MARISOL REYES REYES

Luis Felipe Cházaro Ruiz

ROMAN LOPEZ SANDOVAL

Access level

Open Access

Alternative identifier

doi: https://doi.org/10.1016/j.cartre.2022.100220

Summary or description

"Naphthalene combustion has been used to synthesize grams per hour of solid carbon spheres (CS). The carbon soot was activated by acid treatment consisting in a mixture of HNO3 and H2SO4 (1/3 v/v) to produce hollow carbon spheres (HCS). The effect of two concentrations of CSs (5 and 10 mg mL−1) in the acid mixture, on the physicochemical properties of the activated HCSs was studied. The HSCs were subjected to a thermal treatment to increase their graphitization to enhance their electrical conductivity. High-resolution transmission electron microscopy confirmed the formation of HCSs due to the acid treatment whereas FTIR spectra showed that the chemical activation produced functional groups on the carbon spheres surface and the heat treatment effect to remove some of them as well. A specific surface area of 300 m2 g−1 and a large density of micropores for the acid-treated CSs as well as the heat-treated CSs were estimated by analysis of N2 adsorption-desorption isotherms. A specific capacitance 70 F g−1 was calculated by cyclic voltammetry of the acid and thermally treated HCSs at 5 mV s−1, for both CS concentrations, indicating the possibility of synthesizing these HCSs using a simple method in large quantities for their use in electrochemical capacitors."

Publisher

Elsevier

Publish date

2022

Publication type

Article

Publication version

Published Version

Format

application/pdf

Citation suggestion

C.E. Sánchez-Rodriguez, E. Tovar-Martinez, M. Reyes-Reyes, Luis F. Chazaro-Ruiz, R. López-Sandoval, Synthesis of hollow carbon spheres by chemical activation of carbon nanoparticles for their use in electrochemical capacitor, Carbon Trends, Volume 9, 2022, 100220, https://doi.org/10.1016/j.cartre.2022.100220.

Source repository

Repositorio IPICYT

Downloads

2

Comments



You need to sign in or sign up to comment.