Título

Maize crop coefficient estimation based on spectral vegetation indices and vegetation cover fraction derived from UAV-based multispectral images

Autor

MARIANA DE JESUS MARCIAL PABLO

RONALD ERNESTO ONTIVEROS CAPURATA

WALDO OJEDA BUSTAMANTE

Nivel de Acceso

Acceso Abierto

Resumen o descripción

DOI: https://doi.org/10.3390/agronomy11040668

Remote sensing-based crop monitoring has evolved unprecedentedly to supply multispectral imagery with high spatial-temporal resolution for the assessment of crop evapotranspiration (ETc). Several methodologies have shown a high correlation between the Vegetation Indices (VIs) and the crop coefficient (Kc). This work analyzes the estimation of the crop coefficient (Kc) as a spectral function of the product of two variables: VIs and green vegetation cover fraction (fv). Multispectral images from experimental maize plots were classified to separate pixels into three classes (vegetation, shade, and soil) using the OBIA (Object Based Image Analysis) approach. Only vegetation pixels were used to estimate the VIs and fv variables. The spectral Kcfv:VI models were compared with Kc based on Cumulative Growing Degree Days (CGDD) (Kc-cGDD). The maximum average values of Normalized Difference Vegetation Index (NDVI), WDRVI, and EVI2 indices during the growing season were 0.77, 0.21, and 1.63, respectively. The results showed that the spectral Kcfv:VI model showed a strong linear correlation with Kc-cGDD (R2 > 0.80). The model precision increases with plant densities, and the Kcfv:NDVI with 80,000 plants/ha had the best fitting performance (R2 = 0.94 and RMSE = 0.055). The results indicate that the use of spectral models to estimate Kc based on high spatial and temporal resolution UAV-images, using only green pixels to compute VI and fv crop variables, offers a powerful and simple tool for ETc assessment to support irrigation scheduling in agricultural areas.

Editor

Multidisciplinary Digital Publishing Institute

Fecha de publicación

2021

Tipo de publicación

Artículo

Recurso de información

Formato

application/pdf

Fuente

Agronomy (2073-4395), 11, 668

Idioma

Español

Repositorio Orígen

Repositorio institucional del IMTA

Descargas

0

Comentarios



Necesitas iniciar sesión o registrarte para comentar.