Autor: Gustavo de los Campos

Replication Data for: Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices

Marco Lopez-Cruz Yoseph Beyene Manje Gowda Jose Crossa Paulino Pérez-Rodríguez Gustavo de los Campos (2021)

Genomic prediction models may be used in plant breeding pipelines. They are often calibrated using multi-generation data and there is an open question of whether all available data or a subset of it should be used to calibrate genomic prediction models. Therefore, a study was undertaken to determine whether combining sparse selection indexes (SSIs) and kernel methods could further improve prediction accuracy when training genomic models using multi-generation data. This dataset contains the genotypic and phenotypic data from CIMMYT maize doubled haploid lines that were used to perform the analyses. The results of the analyses are presented in the accompanying article.

Dataset

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA

Prediction models for canopy hyperspectral reflectance in wheat breeding data

Osval Antonio Montesinos-Lopez Jose Crossa Gustavo de los Campos Gregorio Alvarado Suchismita Mondal Jessica Rutkoski Lorena González Pérez Juan Burgueño (2016)

Vegetation indices (VI) generated by using some bands from hyperspectral cameras are used as predictors of primary traits. This study proposes models that use all available bands as predictors of primary traits. The proposed models were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square (PLS). The results were compared with the OLS performed using as predictors each of the eight VIs individually and combined. The data set comes from CIMMYT’s Global Wheat Program and comprises 1170 genotypes evaluated for grain yield in five environments with the reflectance data measured in 250 discrete narrow bands ranging between 492 and 851 nm. in 9 time-points of the crop cycle. Results show that using all the bands simultaneously produced better predictions than using one VI alone or all the VI together, but when used only the bands with heritabilities > 0.5 in Drought environment, the predictions improved, while in the rest of the environments, using all the bands simultaneously produced slightly better prediction accuracies. The models with highest prediction when using all bands were functional B-spline and Fourier. Time-point 6 gives gave promising prediction accuracies for wheat lines before harvesting.

Dataset

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA

Prediction models for canopy hyperspectral reflectance in wheat breeding data

Osval Antonio Montesinos-Lopez Jose Crossa Gustavo de los Campos Gregorio Alvarado Suchismita Mondal Jessica Rutkoski Lorena González Pérez Juan Burgueño (2016)

Vegetation indices (VI) generated by using some bands from hyperspectral cameras are used as predictors of primary traits. This study proposes models that use all available bands as predictors of primary traits. The proposed models were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square (PLS). The results were compared with the OLS performed using as predictors each of the eight VIs individually and combined. The data set comes from CIMMYT’s Global Wheat Program and comprises 1170 genotypes evaluated for grain yield in five environments with the reflectance data measured in 250 discrete narrow bands ranging between 492 and 851 nm. in 9 time-points of the crop cycle. Results show that using all the bands simultaneously produced better predictions than using one VI alone or all the VI together, but when used only the bands with heritabilities > 0.5 in Drought environment, the predictions improved, while in the rest of the environments, using all the bands simultaneously produced slightly better prediction accuracies. The models with highest prediction when using all bands were functional B-spline and Fourier. Time-point 6 gives gave promising prediction accuracies for wheat lines before harvesting.

Dataset

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA